Page 368 - MATLAB an introduction with applications
P. 368

Direct Numerical Integration Methods ———  353

                   This program is executed with two other separate programs f.m and g.m given below:

                   % file f.m
                   function v1=f(t,x1,x2)
                   v1=x2;
                   % file g.m
                   function v2=g(t,x1,x2)
                   k=1; m=1; c=0;
                   F=100*(1-cos(t));
                   v2=(F-k*x1-c*x2)/m;
                   The output values of the data are presented below:
                                time        displacement       velocity
                               0.000000        0.000000        0.000000
                               0.500000        0.110437        0.411687
                               1.000000        0.379029        0.629789
                               1.500000        0.707386        0.653171
                               2.000000        1.004189        0.510442
                               2.500000        1.198540        0.253323
                               3.000000        1.249282      –0.052604
                               3.500000        1.149336      –0.338363
                               4.000000        0.924789      –0.541854
                               4.500000        0.629191      –0.616591
                               5.000000        0.334076      –0.537864


                   The output of the program is shown in Fig. E6.6.
                                       1.5
                                              displacement(m)
                                              velocity(m/s)
                                         1



                                       0.5


                                         0


                                      –0.5



                                        –1
                                          0  0.5  1   1.5  2   2.5  3   3.5  4   4.5  5
                                                              Time(s)
                                                   Fig. E6.6 MATLAB output
   363   364   365   366   367   368   369   370   371   372   373