Page 438 - Marks Calculation for Machine Design
P. 438

P2: Sanjay
        P1: Shibu/Rakesh
                          January 4, 2005
        Brown.cls
                 Brown˙C10
                  420
                            U.S. Customary 15:34  APPLICATION TO MACHINES  SI/Metric
                  Example 2. Using the angle (β), the angular  Example 2. Using the angle (β), the angular
                  velocity (ω rod ), and the velocity (v slider ) found  velocity (ω rod ), and the velocity (v slider ) found
                  in Example 1, determine the angular acceler-  in Example 1, determine the angular acceler-
                  ation (α rod ) and the acceleration of the slider  ation (α rod ) and the acceleration of the slider
                  (a slider ), where                 (a slider ), where
                    ω crank = 2,000 rpm = 209 rad/s    ω crank = 2,000 rpm = 209 rad/s
                    α crank = 0 (ω crank = constant)   α crank = 0 (ω crank = constant)
                       φ = 50 ◦                          φ = 50 ◦
                     L AB = 3in                         L AB = 7.5 cm
                     L BC = 8in                         L BC = 20 cm
                  and determined from Example 1:     and determined from Example 1:
                       β = 14 ◦                          β = 14 ◦
                     ω rod = 592 rpm = 62 rad/s         ω rod = 592 rpm = 62 rad/s
                    v slider = 523 in/s = 43.6 ft/s    v slider = 1,307 cm/s = 13.1 m/s
                  solution                           solution
                  Step 1. Using the given angular velocity  Step 1. Using the given angular velocity
                  (ω crank ), angular acceleration (α crank ), the angle  (ω crank ), angular acceleration (α crank ), the angle
                  (φ), the lengths (L AB ) and (L BC ), the angle (β),  (φ), the lengths (L AB ) and (L BC ), the angle (β),
                  and angular velocity (ω rod ), calculate the angu-  and angular velocity (ω rod ), calculate the angu-
                  lar acceleration (α rod ) from Eq. (10.22) as  lar acceleration (α rod ) from Eq. (10.22) as
                              2                                  2
                        L AB  ω crank  cos φ + α crank sin φ  L AB  ω crank  cos φ + α crank sin φ
                  α rod =                            α rod =
                        L BC       cos β                  L BC        cos β
                       −ω 2 rod  tan β                    −ω 2 rod  tan β
                         3in                               7.5cm

                      =      ×                          =        ×
                         8in                                20 cm
                                 2                                2             
                             rad                                rad
                       
                        209         ◦        ◦            209         ◦        ◦
                              s  cos 50 + (0) sin 50            s  cos 50 + (0) sin 50 
                                                                               
                                                                               
                                 cos 14 ◦                           cos 14 ◦
                                                                               
                                 2                                 2
                            rad                                rad

                       − 62      tan 14 ◦                 − 62      tan 14 ◦
                             s                                  s
                                      2                                  2
                              28,078 rad/s                      28,078 rad/s
                      = (0.375)                         = (0.375)
                                0.9703                             0.9703
                              rad                                rad

                       − 3,844    (0.249)                 − 3,844    (0.249)
                               s 2                               s 2

                             rad       rad                      rad       rad
                      =  10,851  − 958                  =  10,851   − 958
                              s 2      s 2                       s 2      s 2
                            rad  1rev   60 s                  rad  1rev   60 s
                      = 9,893  ×     ×                  = 9,893  ×      ×
                            s 2  2π rad  1 min                 s 2  2π rad  1 min
                             rpm                               rpm
                      = 94,471                          = 94,471
                              s                                 s
   433   434   435   436   437   438   439   440   441   442   443