Page 439 - Marks Calculation for Machine Design
P. 439

P2: Sanjay
        P1: Shibu/Rakesh
                                      15:34
                          January 4, 2005
        Brown.cls
                 Brown˙C10
                              U.S. Customary  MACHINE MOTION      SI/Metric       421
                    Step 2. Using the given angular velocity  Step 2. Using the given angular velocity
                    (ω crank ), angular acceleration (α crank ), the angle  (ω crank ), angular acceleration (α crank ), the angle
                    (φ), the lengths (L AB ) and (L BC ), the angle (β),  (φ), the lengths (L AB ) and (L BC ), the angle (β),
                    and angular velocity (ω rod ), calculate the slider  and angular velocity (ω rod ), calculate the slider
                    acceleration (a slider ) using Eq. (10.23) as  acceleration (a slider ) using Eq. (10.23) as
                                2                                  2
                              ω   (sin φ − cos φ tan β)          ω   (sin φ − cos φ tan β)
                    a slider = L AB  crank             a slider = L AB  crank
                              −α crank (cos φ + sin φ tan β)     −α crank (cos φ + sin φ tan β)
                          +L BC ω 2 rod (cos β + tan β sin β)  +L BC ω 2 rod (cos β + tan β sin β)
                                2                                  2
                              ω   (sin φ − cos φ tan β)          ω   (sin φ − cos φ tan β)
                        = L AB  crank                      = L AB  crank
                              −α crank (cos φ + sin φ tan β)     −α crank (cos φ + sin φ tan β)
                          +L BC ω 2 rod  (cos β + tan β sin β)  +L BC ω 2 rod  (cos β + tan β sin β)
                        = (3in)                            = (7.5cm)
                                     2                                2         
                            
                                 rad                                rad
                             209                              209
                                  s                                 s            
                                                                               
                                   ◦     ◦                           ◦      ◦
                          ×                  ◦             ×                  ◦ 
                             ×(sin 50 − cos 50 tan 14 )      ×(sin 50 − cos 50 tan 14 ) 
                              −(0)                           −(0)              
                                                                     ◦
                                         ◦
                                                                                 ◦
                                                                            ◦
                                              ◦
                                   ◦
                             ×(cos 50 + sin 50 tan 14 )         ×(cos 50 + sin 50 tan 14 )
                                        2                                  2

                                   rad                                 rad
                          + (8in)  62                        + (20 cm)  62
                                    s                                   s
                                ◦
                                           ◦
                                                                         ◦
                                                                   ◦
                                      ◦
                          ×(cos 14 + tan 14 sin 14 )         ×(cos 14 + tan 14 sin 14 )
                                                                              ◦

                                    rad                                  rad
                        = (3in) 43,681  (0.606)            = (7.5cm) 43,681  (0.606)
                                     s 2                                 s 2
                                     rad                                 rad

                          + (8in) 3,844  (1.031)             + (20 cm) 3,844  (1.031)
                                     s 2                                  s 2

                                in         in                       cm         cm
                        =  79,383  + 31,693                =  198,458  + 79,234
                                s 2        s 2                      s 2         s 2
                                in      ft                         cm       m
                        = 111,076  = 9,256                 = 277,692  = 2,777
                                s 2     s 2                        s 2     s 2


                        = 287 g s                          = 283 g s
                      Note the very high g force on the slider. Also, like for Example 1, as the values for both
                    the angular acceleration (α rod ) and the acceleration of the slider (a slider ) are positive, their
                    directions are as shown in Fig. 10.8. If either had turned out negative, then their direction
                    would be opposite to that shown in Fig. 10.8.
                    10.2.3 Cyclic Motion
                    In the previous discussion and calculations, a particular orientation of the slider-crank
                    linkage was considered. As mentioned, the unknown velocities and accelerations could
                    only be determined when a particular crank angle (φ) was specified, along with the other
                    typical given information. However, it is important to the machine designer to understand
                    the motion of a linkage as it moves through a complete cycle.
   434   435   436   437   438   439   440   441   442   443   444