Page 126 - Mechanical design of microresonators _ modeling and applications
P. 126

0-07-145538-8_CH03_125_08/30/05



                                   Microhinges and Microcantilevers: Lumped-Parameter Modeling and Design

                               Microhinges and Microcantilevers: Lumped-Parameter Modeling and Design  125
                                                                 z


                                           t2


                              x
                                                                    t1


                                            1 2          1 1
                              Figure 3.16 Side view of trapezoid paddle microcantilever.

                                                  3
                                                          2
                                                                     2
                                            ȡw 4l t +6l l (t + t ) +4l l (t +2t )
                                                 2 2    1 2  1  2    1 2 1    2
                                               3
                                            +l (t +3t )                                  (3.54)
                                              1
                                                 1
                                                      2
                                     m a,e  =
                                                         12(l + l ) 2
                                                            1
                                                                2
                              The axial resonant frequency is
                                                               Et (t – t )
                                                                 2 1
                                                                      2
                                            3.46(l + l )
                                                 1  2
                                                                          t )]
                                                         ȡ [l (t – t ) + l t ln(t 1/ 2   (3.55)
                                                           2 1
                                                                2
                                                                   1 2
                                 Ȧ   =
                                   a,e     3       2          2            3
                                         4l t +6l l (t + t ) +4l l (t +2t ) + l (t +3t )
                                                              1 2 1
                                                                           1
                                                     1
                                                         2
                                                                       2
                                                                                  2
                                                                             1
                                          2 2
                                                 1 2
                                The torsional stiffness is computed by  inverting the  torsional
                              compliance, which is calculated according to its definition in Eq. (2.26),
                              and it is
                                                             2 3
                                                         2Gt t w
                                                             1 2
                                              k   =                                      (3.56)
                                               t,e       2
                                                    3 2l t + l t (t + t )
                                                             1 2 1
                                                                    2
                                                       2 1
                              The effective torsional mechanical moment of inertia is
                                                               2
                                                                             2
                                                                         2
                                                                                 2
                                                      2
                                              3
                                                   2
                                       ȡw{20l t (w + t ) +15l l (t + t )(2w + t + t )
                                             2 2      2      1 2  1  2       1   2
                                         3
                                              3
                                                                     2
                                                               3
                                                         2
                                                    2
                                       +l 10t +6t t +3t t + t +5w (t +3t )
                                         1    2    1 2   1 2   1       1    2            (3.57)
                                       +2l l 10w (t +2t ) +3(4t +3t t +2t t + t ) }
                                                                      2
                                                                                3
                                                                3
                                                 2
                                                                           2
                                          2
                                          1 2       1   2      2    1 2    1 2  1
                                 J  =
                                  t,e                             2
                                                        720(l + l )
                                                             1  2
                           Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
                                      Copyright © 2004 The McGraw-Hill Companies. All rights reserved.
                                        Any use is subject to the Terms of Use as given at the website.
   121   122   123   124   125   126   127   128   129   130   131