Page 185 - Mechatronic Systems Modelling and Simulation with HDLs
P. 185

174                                               8  MICROMECHATRONICS


                 number xi = 0.0, # x-coordinate, node i
                         yi = 0.0, # y-coordinate, node i
                      .....
                 number dens = 0.0, # Density
                      .....
               {
                 foreign planeu2       # C function
                      ....
                 val nu l1_2,l1_3,l1_4, # L coefficient
                      ....
                         c1_1,c1_3,        # C coefficient
                      ....
                 # Definition of branch voltages and currents
                 # at node uxi
                 branch i1_1a = i(uxi->gnd), \
                         v1_1 = v(uxi,gnd)
                 ....
                 ....
                 # at node uyl
                 branch i8_8a = i(uyl->gnd), \
                         v8_8   = v(uyl,gnd)
                 # Call up of the external C function for the calculation
                 # of the mass and stiffness matrix of the element
                 values{
                   ...
                   (l1_2,l1_3,......       \
                     c1_1,c1_3,.....) =    \
                   plane_u2 (xi, yi, .....)
                   ...
                 }
                 # Definition of the dynamic equations
                 equations{
                   i1_1a = d_by_dt(v1_1     * c1_1)
                   v1_2   = d_by_dt(i1_2b * l1_2)
                   ....
                   i8_8a = d_by_dt(v8_8     * c8_8)
                   }
               }
               Hardware description 8.1  Description of the finite plane elements, each with four nodes and
               two degrees of freedom


               System matrix

               Using the element description obtained in this manner the deflections of the finite
               elements in question are represented by the voltages at the terminals of the ele-
               ment. The currents at the nodes in question describe the integral of the associated
   180   181   182   183   184   185   186   187   188   189   190