Page 141 - Modern Control Systems
P. 141

Section 2.9  The Simulation of Systems  Using Control  Design Software   115


                        »y0=0.15;
                        »wn=sqrt(2);  <
                        »zeta=1/(2*sqrt(2));
                        »t=[0:0.1:10];
                        »unforced
                        unforced.m
                        %Compute Unforced Response to an Initial Condition
                        %
                                    A
                        c=(yO/sqrt(1-zeta 2));  ««-                              y(0)/Vl  -  p
                                                    A
                        y=c*exp(-zeta*wn*t) .*sin(wn*sqrt(1 -zeta 2)*t+acos(zeta));
                        %
                        bu=c*exp(-zeta*wn*t);bl=-bu;  -*                         e  &"' envelope
                        %
                                      ,
      FIGURE  2.50      plot(t )y,t,bu,'--',t,bl,'" ) 1 grid
      Script to analyze   xlabel(Time (s)'), ylabel('y(t)  (m)')
      the spring-mass-  legend(['\omega_n=',num2str(wn),'  \zeta=',num2str(zeta)])
      damper.



                           0.20
                                         1
                                                               J         \
                                                               I
                               \
                           0.J5                               —  «« =  1.4142, £= 0.3535
                                         j
                                \^       1                                1
                           0.10                     _  _ _ .  1-.
                                                 3^(0)'  e-^ t
                                               Vl  -  p  |
                           0.05
                                                    i    !
                             0         \  1                  ipr
                          -0.05                              -
                                                         i
                                      s
                          -0.J0   /  J,
                                  /
                                 /
                                /            V 1   2
                          -0.15                  ~  ^  j  i                        -
                                               ""  """1  I         \
      FIGURE  2.51                                       i
      Spring-mass-        -0.20                     1    i
      damper unforced         0                     4    5                    9     10
      response.                                        Time (s)


                       control  systems subject  to a variety  of inputs  and initial conditions, it is difficult  to
                       obtain the solution analytically. In these cases, we can compute the solutions numer-
                       ically and to display the solution graphically.
                          Most  systems  considered  in  this  book  can  be  described  by  transfer  functions.
                       Since the transfer function is a ratio of polynomials, we begin by investigating how to
                       manipulate  polynomials, remembering  that  working  with  transfer  functions  means
                       that both a numerator polynomial and a denominator polynomial must be  specified.
   136   137   138   139   140   141   142   143   144   145   146