Page 145 - Modern Control Systems
P. 145

Section 2.9  The  Simulation  of Systems  Using Control  Design  Software  119

                                               Pole-Zero Map
















      FIGURE  2.57
      Pole-zero map for
      G(s)/H(s).

                        »numg=[6  0 1]; deng=[1 3 3 1];sysg=tf(numg,deng);
                        »z=zero(sysg)


                                                           Compute poles and
                        Z-         -4-
                                                             zeros of G(s)
                          0 + 0.4082i
                          0 - 0.4082J
                        »p=pole(sysg)

                        P =                                    Expand H(s)
                          -1.0000
                          -1.0000 +  O.OOOOi
                          -1.0000-  O.OOOOi
                                                     '
                        »n1=[1  1]; n2=[1 2]; d1=[1 2*i]; d2=[1 -2*i]; d3=[1 3];
                        »numh=conv(n1,n2); denh=conv(d1 ,conv(d2,d3));
                        »sysh=tf(numh,denh)
                        Transfer function:
                            A
                           s 2 + 3 s + 2
                                                  fi{s)
                        A
                              A
                                  4
                        s 3 + 3s 2 + s  + 12
                                                                G(s)
                        »sys=sysg/sysh  -*—                         =  sys
                                                                H(s)
                        Transfer function:
                                       A
                                             A
                          A
                       6 s 5 +18 sM + 25 s 3 + 75 s 2 + 4 s +12
                                            A
                         A
                                      A
      FIGURE  2.58       s 5 + 6 sM + 14 s 3 + 16 s 2 + 9 s + 2
      Transfer function
      example for G{s)   »pzmap(sys)  ^                    Pole-zero map
      and H(s).
                      cannot  be  the  case, since  we  know  that  for  physical  systems the  number  of  poles
                      must be greater than or equal to the number  of zeros. Using the roots function, we
                      can  ascertain  that  there  are  in fact  four  poles at  s  =  —1. Hence, multiple  poles or
                      multiple zeros at the same location cannot be discerned on the pole-zero map.  •
   140   141   142   143   144   145   146   147   148   149   150