Page 149 - Modern Control Systems
P. 149

Section 2.9  The Simulation of Systems  Using Control  Design Software   123

                                 £ 0W       s+  1  V{s)
                      /?(.*)          G c(s)           G(s) =   2    •*> Y(s)
                                            s + 2           500  s


                                               (a)


                         »numg=[1]; deng=[500 0 0]; sys1=tf(numg,deng);
                         »numc=[1  1]; denc=[1 2]; sys2=tf(numc,denc);
                         »sys3=series(sys1 ,sys2);
                         »sys=feedback(sys3,[1 ])

                         Transfer function:
                                   s + 1                Y(s) ._  G c(s)G(s)
     FIGURE 2.66           5O0s 3 + 1000s 2 + + 1  4   R(s)  I  + G c(s)G(s)
                                       A
                               A
                                           s
     (a) Block diagram.
     (b) Application of
     the feedback
     function.                                 (b)

                                ^  £«(*)  Process
                      /?(.v)               G(s)         •  Y(s)
     FIGURE 2.67
     A basic control
     system with the                     Controller
     controller in the                           « « —
     feedback loop.




                      EXAMPLE  2.20  The feedback  function with unity feedback
                      Let the process, G(s), and the controller, G c(s), be as in Figure 2.66(a). To apply the
                      feedback  function,  we first  use the series function  to compute G c(s)G(s),  followed
                      by  the  feedback  function  to  close  the  loop. The  command  sequence  is  shown  in
                      Figure 2.66(b). The closed-loop transfer  function, as shown in Figure 2.66(b), is

                                         G c(s)G(s)            s  + 1
                                T(s)                       3       2           sys.
                                       1  +  G c(s)G(s)  500s  +  1000^  +  .? +  1

                         Another basic feedback control configuration is shown in Figure 2.67. In this case,
                      the controller is located in the feedback path. The closed-loop transfer  function  is

                                                m =        G(s)
                                                       1  =F G(s)H(s)'


                      EXAMPLE  2.21  The feedback  function
                      Let  the process, G(s), and  the controller, H(s), be  as in Figure 2.68(a). To compute
                      the  closed-loop  transfer  function  with  the  controller  in the  feedback  loop, we  use
   144   145   146   147   148   149   150   151   152   153   154