Page 152 - Modern Control Systems
P. 152

126             Chapter  2  Mathematical  Models of  Systems



                                 No common factors   Possible common factors
                                    T(s) =  sys        G(s) ~  sysl


            FIGURE  2.70
           The minreal                      sys=r Tiinr<  3al(sys1)
            function.




                              »num=[1 4 6 6 5 21; den=[12 205 1066 2517 3128 2196 712];
                              »sys1 =tf(num,den);
                              »sys=minreal(sys1);  M   Cancel common factors.
                              Transfer function:
            FIGURE  2.71         0.08333 sM + 0.25 s 3 + 0.25 s 2 + 0.25 s + 0.1667
                                                       A
                                                A
           Application of the   A                A       A
                               s 5 + 16.08 sM + 72.75 s 3 + 137 s 2 + 123.7 s + 59.33
            minreal function.
                            EXAMPLE 2.23    Electric traction motor control

                            Finally, let us reconsider the electric traction motor system from  Example 2.14. The
                            block diagram is shown in Figure 2.44(c). The objective  is to compute the closed-loop
                            transfer  function  and  investigate  the  response  of  <o(s)  to a commanded  Q)d(s). The
                            first  step, as shown  in  Figure  2.72, is to  compute  the  closed-loop  transfer  function
                            a)(s)/(o d(s)  =  T(s).  The  closed-loop  characteristic  equation  is  second  order  with
                            (o n =  52 and £ =  0.012. Since the damping is low, we expect the response to be high-
                            ly oscillatory. We can investigate the response <o(t) to a reference input, <o d(t), by uti-
                            lizing the step function. The step function, shown in Figure 2.73, calculates the unit
                            step response  of  a linear  system. The step  function  is very important, since control
                            system performance  specifications  are often  given in terms of the unit step response.



                              »num1=["IO]; den1=[1 1]; sys1=tf(num1,den1);
                              »num2=[1]; den2=[2 0.5]; sys2=tf{num2,den2);
                              »num3=[540]; den3=[1]; sys3=tf(num3,den3);
                              »num4-[0.1]; den4-[1]; sys4-tf(num4,den4);
                              »svs5=series(svs1 ,svs2);            Eliminate
                              »sys6=feedback{sys5,sys4);  "        inner loop
                              »sys7=series(sys3,sys6);
                              »sys=feedback(sys7,[1])  M  1
                                                           Compute closed-loop
                                                             transfer function

                              Transfer function:
           FIGURE 2.72               5400                             w(s)
           Electric traction     A
           motor  block        2 s 2 + 2.5 s + 5402  '                <o d(s)
           reduction.
   147   148   149   150   151   152   153   154   155   156   157