Page 151 - Modern Control Systems
P. 151

Section  2.9  The Simulation of Systems  Using Control  Design  Software  125


                        »ng1=[1]; dg1=[1 10]; sysg1=tf(ng1,dg1);
                        »ng2=[1]; dg2=[1 1]; sysg2=tf(ng2,dg2);
                        »ng3=[1  0 1]; dg3=[1 4 4]; sysg3=tf(ng3,dg3);
                        »ng4={1  1]; dg4=[1 6]; sysg4=tf(ng4,dg4);
                        »nh1=[1  1];dh1=[1 2]; sysh1=tf(nh1,dh1);   Step 1
                        »nh2=[2]; dh2=[1]; sysh2=tf(nh2,dh2);
                        »nh3=[1]; dh3=[1]; sysh3=tf(nh3,dh3);
                        »sys 1 =sysh2/sysg4;                Step 2
                        »sys2=series(sysg3,sysg4);
                        »sys3=feedback(sys2,sysh1 ,+1);     Step 3
                        »sys4=series(sysg2,sys3);
                        »sys5=feedback(sys4,sys1);
                                                            Step 4
                        »sys6=series(sysg1 ,sys5);
                        »sys=feedback(sys6,sysh3);
                                                            Step 5
                        Transfer function:
      FIGURE  2.69                  s 5 + 4 sM + 6 s 3 + 6 s 2 + 5 s + 2
                                                A
                                                     A
                                    A
      Multiple-loop block   12  s ^  + 205 s 5 + 1066 sM + 2517 s 3 + 3128 s 2 + 2196 s + 712
                                   A
                                                    A
                                                            A
      reduction.
                          For this example, a five-step procedure is followed:

                         Q  Step 1. Input the system transfer  functions.
                         •  Step 2. Move H 2  behind G 4 .
                         ~)  Step 3. Eliminate the G 3G^Hi  loop.
                         0  Step 4. Eliminate the loop containing H 2.
                         •  Step 5. Eliminate the remaining loop and calculate T(s).
                      The  five  steps  are  utilized  in Figure  2.69, and  the  corresponding  block  diagram
                      reduction  is shown in Figure 2.27. The result  of executing the commands is
                                                      A
                                               s 5  +  As  + 6s 3  + 6s 2  + 5s  + 2
                              sys  =  6       5        4       3        2
                                    12s  + 205s  +  10665  +  2517s  +  3128s  +  2196s  +  712'

                      We must  be  careful  in  calling  this  the  closed-loop  transfer  function. The  transfer
                      function  is defined  as the input-output  relationship  after  pole-zero  cancellations.
                      If we compute the poles and zeros  of  T(s), we find  that the numerator  and denom-
                      inator polynomials have  (s  +  1) as a common factor. This must be canceled  before
                      we  can  claim  we  have  the  closed-loop  transfer  function.  To  assist  us  in  the
                      pole-zero  cancellation,  we  will  use  the  minreal  function.  The  minreal  function,
                      shown  in  Figure  2.70, removes  common  pole-zero  factors  of  a  transfer  function.
                      The final step in the block reduction process is to cancel out the common factors, as
                      shown in Figure 2.71. After  the application  of the minreal function, we find that the
                      order  of  the denominator  polynomial has been  reduced  from  six to five, implying
                      one pole-zero cancellation.  •
   146   147   148   149   150   151   152   153   154   155   156