Page 206 - Modern Control Systems
P. 206

180              Chapter 3  State Variable  Models

                             Multiplying the numerator and denominator  by s~\ we have
                                                                   l     2      3
                                                      Y(s)     2s~  + Ss~  +  6s~
                                               T(s) =               l      2                    (3.54)
                                                      U(s)   1 +  8s~  + 16s~  +  6sr
                                                                                -.
                                The  first  model is the phase  variable  state  model  using the feedforward  of the
                             state variables to provide the output  signal. The signal-flow graph and block diagram
                             are shown in Figures 3.15(a) and (b), respectively. The state differential  equation is

                                                        0     1   0       0
                                                       0     0     1  x  +  0   "(0,            (3.55)
                                                      - 6   -16   - 8     1

                             and the output is

                                                                       * i
                                                      v(0  =  [6  8  2]                        (3.56)












                                    U(s) O






                                                            (a)








                             U(s)



            FIGURE 3.15
            (a) Phase variable
            flow graph state
            model for T{s).
            (b) Block diagram
            for the phase
            variable canonical
            form.                                           (b)
   201   202   203   204   205   206   207   208   209   210   211