Page 242 - Modern Control Systems
P. 242

216              Chapter 3  State Variable Models

                               Consider the block diagram in Figure 3.43 for Problems  12 through 14:



                                                 Controller               Process
                                       + ^  E a{s)                          10
                                RU)     •O                     o          s+  10         +>Y{s)





                                FIGURE 3.43  Block diagram for the Skills Check.
                            12.  The effect  of the input  R(s)  and the disturbance  T d(s)  on the output  Y(s)  can be
                               considered independently  of each other because:
                               a.  This is a linear system, therefore  we can apply the principle  of superposition.
                               b.  The input  R(s)  does not influence the disturbance  T d(s).
                               c.  The disturbance  T d(s)  occurs at high frequency, while the input R(s)  occurs at low
                                 frequency.
                               d.  The system is causal.
                            13. The state-space representation  of the closed-loop system from  R(s)  to Y(s)  is:
                                 x  = -10*  +  lOKr
                               a.
                                      y  =  x
                                 x  =  -(10  +  lOK)x  +  r
                               b.
                                       y  =  10*
                                 .1-=-(10+  IOJQJC  +  lOKr
                               c
                                          v =  x
                               d.  None of the above
                            14. The steady-state error  E{s)  = Y{s)  -  R(s)  due to a unit step disturbance T (t(s)  =  l/.v is:
                               a.  e ss  =  lim e(t)  =  oo
                                      f->0O
                               b.  e ss  =  Iime(/)  =  1
                                                1
                               c.  e^  =  lime(r)  =
                                      /-»00   K  +  1
                               d.  e ss  =  lim e(t)  =  K  + I
                                      /—»oo
                            15.  A system is represented  by the transfer  function  +  10)
                                                                 5(5
                                                     =  T(s)  =
                                                                   2
                                                R{s)        5 3  +  10s  +  205  +  50'
                               A state variable representation is:
                                      -10  -20   50"    ~r
                                       1     0   0  x  +  i
                                       0    1    0  _   _0_
                                 y  =  [0  5  50]x
                                     "-10  -20   50"    " l "
                               b.  x  =  1  0    0  x +  0
                                       0    1    0  _   _0_
                                 y  = [l  0  50]x
   237   238   239   240   241   242   243   244   245   246   247