Page 237 - Modern Control Systems
P. 237

Section 3.10  Sequential Design Example: Disk Drive Read System     211

                       Table 3.2  Typical Parameters of the Two-Mass Model
                       Parameter            Symbol        Value
                       Motor mass           M x           20 g =  0.02 kg
                       Flexure spring       k             10 ^  k  <  oo
                       Head mounting mass   Mi            0.5 g =  0.0005 kg
                       Head position        x 2(t)        variable in mm
                                                                  3
                       Friction at mass 1   bi            410 x  10"  N/(m/s)
                       Field resistance     R             in
                       Field inductance     L             lmH
                       Motor constant       K,n           0.1025 Nm/A
                                                                  _3
                       Friction  at mass 2   b 2          4.1 x  10 N/(m/s)

                                                           Head
                                                          position
                                Motor   —•</(/)     Head   —*.v(r)                  i—• v(t)
      FIGURE 3.40               mass   Flexure  spring  mass                        i
      (a) Model of the   «(0
      two-mass system   Force   >  M x   -M/vW-     M 2            u(t)  •  M  =  M x  +  M 2
      with a spring                        k
      flexure.                                       b,
      (b) Simplified model
      with a rigid spring.                (a)                                (b)


                       For the parameters  of Table 3.2, we obtain

                                         Y(s)           1            48.78
                                         U(s)   s(0.0205s  +  0.410)  s(s  + 20)'

                       The transfer function  model of the head reader, including the effect  of the motor coil,
                       is shown in Figure 3.41. When R  =  1 Cl, L  =  1 mH, and K m  =  0.1025, we obtain

                                                  Y(s)  =      5000
                                          G(s)  =                                        (3.118)
                                                 V(s)    s(s  + 20)(s  + 1000)'

                       which is exactly the same model we obtained  in Chapter 2.
                          Now  let  us  obtain  the  state  variable  model  of  the  two-mass  system  shown  in
                       Figure 3.40(a). Write the differential  equations as


                                                    2
                                                   d q     da
                                       Mass M x: Mi—7   +  /7,-^-  +  k(q  -  y)  =  u(t)
                                                     2
                                                   dt      dt    v*    "

                                  Motor
                                   coil              Mass
      FIGURE 3.41
      Transfer function            K m      U(s)      I
      model of head    V(.v)     Ls  +  R          s(Ms  +  b t)  m)
      reader device with                   Force
      a rigid spring.
   232   233   234   235   236   237   238   239   240   241   242