Page 85 - Modern Control Systems
P. 85

Section 2.4  The Laplace Transform                                    59

                       The transformation  integrals have been  employed  to derive tables of Laplace  trans-
                       forms that are used for the great majority  of problems. A  table of important  Laplace
                       transform  pairs  is given  in Table  2.3, and  a more  complete  list of  Laplace  transform
                       pairs can  be found  at the  MCS  website.


       Table 2.3  Important Laplace Transform Pairs
       m                                                   F(s)

       Step function,  u(t)


                                                           s  +  a
                                                             bi
       sin cot
                                                           S 2  +  bi 2
                                                             s
       COS  bit
                                                           S 2  +  bi 2
                                                            nl
       t"
               k
              d f(t)                                        k        _,        k 2
                                                           s F{s)  -  5* /(0")  -  s - f'(Q-)
                dt k
                                                             - . . . - / ^ - ^ ( 0 - )
       I   f(t)dt                                           s   1  sj -oo  j

       Impulse function  8(t)                              1
                                                                bi
       e  sin cut                                                2
                                                           (s  + a)  + bi 2
                                                              s +  a
       e  "' cos bit
                                                           (s  + af  + bi"
                                                              s +  a
                    2 V2
       -[(a  -  a) 2  +  bi ] e- al  sin(bit  +  cf>).
                                                                  + bi
                                                           (s  +  af  2  a.  ,.2
          —
        <j>  = +or*~l-
              tan
                              2
          ^=e  _ f a ,  n'  sin bi nVl  -  £ t, £  <  1
       Vl-£ 2                                              S  +  2£b) nS  +  bi n
         1          1                                            1
                           at
                         e sm(bit  -  ¢),                         2    2
       a 1  +  to"  bi\/a 2  +  bi'                        s[(s  +  a)  + bi ]
               _i  bi l
        <j>  =  tan  —
                 —a
                    {
       1    .  *  e" V  sin(<«>„Vl  -  eft  +  <f>),
          V l  -  C 2                                      S(S  +  2£b) nS +  bi n)
                 _1
        <f>  = cos £, £  <  1
         a      1  (a  -  a) 2  + to 2  1/2  e~  %m.{bit  +  <f>).  s  +  a
                                   al
                                                                       2
       a 1  +  b/  (o  a 2  +  co 2                        s[(s  +  a) 2  + bi ]
                           - 1
        (f)  — =  t o n  1  tan —
             tan
                a  —  a     —a
   80   81   82   83   84   85   86   87   88   89   90