Page 252 - Numerical Analysis Using MATLAB and Excel
P. 252

Line Spectra


                                                      ⁄
                                                     π k
                                                 A          A π    π ⎞   A
                                                              ⎛
                                          C =   ------t  =  ------ --- +  ---  ⎠  =  ----            (6.107)
                                                              ⎝
                                                2π
                                            0
                                                      ⁄
                                                    – π k  2π k    k     k
                For the values for n ≠  0 , integration of (6.106) yields
                                                              ⁄
                                                                      ⁄
                                                 ⁄
                                      A    – jnt  π k  A e  jnπ k  e –  – jnπ k  A  ⎛  nπ ⎞
                                                         ⋅
                              C =   ---------------e  – π k  =  ------ ------------------------------------- =  ------ sin⋅  ⎝  ------
                                                                                    k ⎠
                                n
                                                                           nπ
                                                      nπ
                                     jn2π
                                                 ⁄
                                                                j2
                                    –
                                                                                                     (6.108)
                                                             ⁄
                                             ⁄
                                      sin (  nπ k )  A sin (  nπ k )
                                                     ⋅
                                  =  A-------------------------- =  ---- --------------------------
                                                           ⁄
                                          nπ       k    nπ k
                and thus,
                                                       ∞  A sin (  nπ k )
                                                                    ⁄
                                                            ⋅
                                              ft() =  ∑   ---- --------------------------            (6.109)
                                                                   ⁄
                                                          k
                                                                nπ k
                                                     n =  – ∞
                                                     ⁄
                The relation of (6.109) has the  sin x x  form, and the line spectrum is shown in Figures 6.26
                through 6.28, for k =  2 , k =  5  and k =  10  respectively by using the MATLAB scripts below.
                fplot('sin(2.*x)./(2.*x)',[−4  4  −0.4  1.2])
                fplot('sin(5.*x)./(5.*x)',[−4  4  −0.4  1.2])
                fplot('sin(10.*x)./(10.*x)',[−4  4 −0.4  1.2])
                                    1.2
                                                                                   K=2
                                     1
                                    0.8
                                    0.6
                                    0.4
                                    0.2
                                     0
                                    -0.2
                                    -0.4
                                      -4    -3    -2    -1     0     1     2     3      4

                                         Figure 6.26. Line spectrum of (6.109) for k =  2











               Numerical Analysis Using MATLAB® and Excel®, Third Edition                             6−35
               Copyright © Orchard Publications
   247   248   249   250   251   252   253   254   255   256   257