Page 255 - Numerical Analysis Using MATLAB and Excel
P. 255

Chapter 6  Fourier, Taylor, and Maclaurin Series






                                                        ysin3x  0.000  0.131  0.259  0.383  0.500  0.609  0.707  0.793  0.866  0.924  0.966  0.991  1.000  0.991  0.966  0.924  0.866  0.793  0.707  0.609  0.500


                                                        sin3x  0.000  0.131  0.259  0.383  0.500  0.609  0.707  0.793  0.866  0.924  0.966  0.991  1.000  0.991  0.966  0.924  0.866  0.793  0.707  0.609  0.500


                                                        ycos3x  0.000  0.991  0.966  0.924  0.866  0.793  0.707  0.609  0.500  0.383  0.259  0.131  0.000  -0.131  -0.259  -0.383  -0.500  -0.609  -0.707  -0.793  -0.866


                                                        cos3x  ysin2x  1.000  0.000  0.991  0.087  0.966  0.174  0.924  0.259  0.866  0.342  0.793  0.423  0.707  0.500  0.609  0.574  0.500  0.643  0.383  0.707  0.259  0.766  0.131  0.819  0.000  0.866  -0.131  0.906  -0.259  0.940  -0.383  0.966  -0.500  0.985  -0.609  0.996  -0.707  1.000  -0.793  0.996  -0.866  0.985
                       f(t)=4(sinwt/p+sin3wt/3p+sin5wt/5p+ ….)  0.000  b1=  0.000  0.000  b2=  b3=  0.000  b4=  0.000  b5=  0.000  0.000  b6=  b7=  0.000  sin2x  0.000  0.000  0.087  0.996  0.174  0.985  0.259  0.966  0.342  0.940  0.423  0.906  0.500  0.866  0.574  0.819  0.643  0.766  0.707  0.707  0.766  0.643  0.819  0.574  0.866  0.500  0.906  0.423  0.940  0.342  0.966  0.259  0.985  0.174  0.996  0.087  1.000  0.000  0.996  0.985
                                            0.254
                                          0.000
                                              0.000
                                                 0.180
                                   1.273
                                     0.000
                                       0.424


                  Analytical:     Numerical:  DC=  a1=  a2=  a3=  a4=  a5=  a6=  a7=  ycox2x  cos2x  1.000  0.996  0.985  0.966  0.940  0.906  0.866  0.819  0.766  0.707  0.643  0.574  0.500  0.423  0.342  0.259  0.174  0.087  0.000  -0.087  -0.087  -0.174  -0.174





                                              8.0       ysinx  0.000  0.044  0.087  0.131  0.174  0.216  0.259  0.301  0.342  0.383  0.423  0.462  0.500  0.537  0.574  0.609  0.643  0.676  0.707  0.737  0.766

                                                        sinx  0.000  0.044  0.087  0.131  0.174  0.216  0.259  0.301  0.342  0.383  0.423  0.462  0.500  0.537  0.574  0.609  0.643  0.676  0.707  0.737  0.766
                       Square waveform  Average=  4.0   ycosx  cosx  0.000  1.000  0.999  0.999  0.996  0.996  0.991  0.991  0.985  0.985  0.976  0.976  0.966  0.966  0.954  0.954  0.940  0.940  0.924  0.924  0.906  0.906  0.887  0.887  0.866  0.866  0.843  0.843  0.819  0.819  0.793  0.793  0.766  0.766  0.737  0.737  0.707  0.707  0.676  0.676  0.643  0.643
                                              6.0










                                              2.0       0.5*a0  0.000  0.044  0.044  0.044  0.044  0.044  0.044  0.044  0.044  0.044  0.044  0.044  0.044  0.044  0.044  0.044  0.044  0.044  0.044  0.044  0.044
                                                        y=f(x)  0.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000  1.000



                                              0.0       x(rad)  0.000  0.044  0.087  0.131  0.175  0.218  0.262  0.305  0.349  0.393  0.436  0.480  0.524  0.567  0.611  0.654  0.698  0.742  0.785  0.829  0.873
                       1.5  1.0  0.5  0.0  -0.5  -1.0  -1.5  0.0  2.5  5.0  7.5
                                                        x(deg)        10.0  12.5  15.0  17.5  20.0  22.5  25.0  27.5  30.0  32.5  35.0  37.5  40.0  42.5  45.0  47.5  50.0



                        Figure 6.30. Numerical computation of the coefficients of the square waveform (partial listing)






               6−38                             Numerical Analysis Using MATLAB® and Excel®, Third Edition
                                                                              Copyright © Orchard Publications
   250   251   252   253   254   255   256   257   258   259   260