Page 339 - Process Modelling and Simulation With Finite Element Methods
P. 339

326        Process Modelling and Simulation with Finite Element Methods

                        Time=l  Surface: Y
              Contour: phi  Arrow:Velocity vector           Max  3  Max  1
                                                            n2
                                                !
              1 _I.....   ...  I...  ..............  ..I. ....... I......  ...  ....... :.....2   09
                 ......  .........
                                         .:.
            0 8 -~.   .:.   .:.   ..... .......... ......  ..............
                                               ,;
                                   :
                                                                   08
            0.6 -1..   .....................................................
                                                                   07
                                                                   06
                                                                   05
                                                                   04
                                                                   03
            -0.6 .;.   ........ :  ........  .........:...  ....................   02
            -0 8 {.  ......... .:  ...   ...I.. ......... .!. ................. .:.  ....... ;. ... -   01
             -1   -:.  .................. :.... .................. ;.  ................. ..:
               I                                I                  n
               0     0.5    1     1.5    2     2.5    3     Min. 0   Min: -0.OC I1 03
          Figure 9.3  Combined concentration (Y, color), electric potential  (phi, contour), and velocity vector
          (u. v, arrow) plot.  Coupling on the boundary of species electrophoresis/diffusion  with electric field
          drags the fluid along.



                                              1
           25 r
             I
            2                                08
             I
                                             06
           15-1                            r
            l.\                              04
                                 ,
                                             02
           05-1
                                             0
                        Arc Lenglh                        Arc Length
          Figure 9.4  Histories of electric potential (phi) and species concentration Y along boundary 2 (wall).


          So the first question is why does our recipe work?  39.2 supposes three reasons
          for implementing weak boundary constraints.  Our application satisfies the final
          two:
          (1)  Handling nonlinear constraints
          The  nonlinear  solver  in  FEMLAB  handles  linear  or  nearly  linear  standard
          constraints. Note well, however,  that Neumann  conditions  are not considered  a
          constraint in this  context. Weak  constraints can include nonlinearities because
   334   335   336   337   338   339   340   341   342   343   344