Page 348 - Process Modelling and Simulation With Finite Element Methods
P. 348
Electrokinetic Flow 335
Integration order: 2
Destination Geom 1 bnd 9 Check “Active in this domain” box.
scalar add Ia. Source Geom 1, subdomain 1, boundary 3.
Integrand: sigr*(PHIA-volta)/dsa
Integration order: 2
Destination Geom 1 bnd 3 Check “Active in this domain” box.
scalar add Ib. Source Geom 1, subdomain 1, boundary 1.
Integrand: sigr*(PHIB-voltb)/dsb
Integration order: 2
Destination Geom 1 bnd 1 Check “Active in this domain” box.
scalar add Ic. Source Geom 1, subdomain 1, boundary 9.
Integrand: sigr*(PHIC-voltc)/dsc
Integration order: 2
Destination Geom 1 bnd 9 Check “Active in this domain” box.
scalar add bara. Source Geom 1, subdomain 1, boundary 3.
Integrand: p
Integration order: 2
Destination Geom 1 bnd 3 Check “Active in this domain” box.
scalar add barb. Source Geom 1, subdomain 1, boundary 1.
Integrand: p
Integration order: 2
Destination Geom 1 bnd 1 Check “Active in this domain” box.
scalar add barc. Source Geom 1, subdomain 1, boundary 9.
Integrand: p
Integration order: 2
Destination Geom 1 bnd 9 Check “Active in this domain” box.
scalar add volta. Source Geom 1, subdomain 1, boundary 3.
Integrand: phi
Integration order: 2
Destination Geom 1 bnd 3 Check “Active in this domain” box.
scalar add voltb. Source Geom 1, subdomain 1, boundary 1.
Integrand: phi
Integration order: 2
Destination Geom 1 bnd 1 Check “Active in this domain” box.
scalar add voltc. Source Geom 1, subdomain 1, boundary 9.
Integrand: phi
Integration order: 2
Destination Geom 1 bnd 9 Check “Active in this domain” box.
That was pretty long-winded to evaluate (9.1 1) in a straightforward way. Now
we need to implement the appropriate boundary conditions from the “flux type
variables”: Q’s (volume flux) and 1’s (current flux): Pull down the Boundary