Page 169 - Reliability and Maintainability of In service Pipelines
P. 169

154 Reliability and Maintainability of In-Service Pipelines


           Using First Passage Probability Method Eq. (5.30) is a typical upcrossing problem
           that can be solved by using first passage probability theory. In a time-dependent reli-
           ability problem all or some of the basic random variables are modeled as stochastic
           processes. For the above problem, the sewer failure depends on the time that is
           expected to elapse before the first occurrence of the stochastic process, d(t), upcrosses
           a critical limit (the threshold, d max ) sometime during the service life of the sewer.
              As it was described in Section 4.3, the probability of failure of a pipe can be
           determined by using first passage probability theory from Eq. (4.9). Considering
           Eq. (5.30) as the failure definition, reduction of wall thickness (d) is the action
           (load) and d max is its effect or the acceptable limit (resistance). Therefore
           Eq. (4.9) can be reproduced with d replacing S and d max replacing R.
                                         (           !                 !)
                   ð t
                     σ _ djd ðtÞ  d max 2 μ ðtÞ  μ _ djd ðtÞ  μ _ djd ðtÞ  μ _ djd ðtÞ
                                     d
            P f tðÞ 5      [              [2           1       Φ          d τ
                    0  σ d ðtÞ  σ d ðtÞ         σ _ djd ðtÞ  σ _ djd ðtÞ  σ _ djd  ðtÞ
                                                                         ð5:31Þ
              For a given Gaussian stochastic process with mean function μ tðÞ, and autoco-
                                                                d

           variance function C dd t i ; t j , all terms in Eq. 5.31 can be determined as outlined
           in Section 4.3 by using the following formulations:
                                  _            1 ρ
                                                   σ _ d
                          μ _ djd  5 E djd 5 d max 5 μ _ d  ðd max 2 μ Þ  ð5:32aÞ
                                                  d           d
                                                   σ d
                                           2     2 1=2
                                    σ _ djd  5 ½σ _ d  ð12ρ ފ          ð5:32bÞ
                                                 d
           where
                                            dμ ðtÞ
                                              d
                                          5
                                       μ _ d                            ð5:32cÞ
                                              dt
                                      "             # 1=2
                                         2
                                    5   @ C dd ðt i ; t j Þ
                                  σ _ d                                 ð5:32dÞ
                                          @t i @t j
                                                 i5j
                                           C _ðt i ; t j Þ
                                 ρ 5        dd                          ð5:32eÞ
                                  d                  1=2
                                                 ðt j ; t j Š
                                      ½C dd ðt i ; t i ÞUC _ d _ d
           and the cross-covariance function is
                                             @C dd ðt i ; t j Þ
                                   C _ðt i ; t j Þ 5                    ð5:32fÞ
                                     dd
                                                @t j
                                            2
                                 C dd ðt i ; t j Þ 5 λ ρ μ ðt i Þμ ðt j Þ  ð5:32gÞ
                                            d d d   d
           where λ d is the coefficient of variation of the wall thickness reduction which is
           determined based on Monte Carlo simulations and ρ d  is (auto-) correlation
   164   165   166   167   168   169   170   171   172   173   174