Page 58 - Science at the nanoscale
P. 58

9:2
                   June 9, 2009
                              Brief Review of Quantum Mechanics
                          48
                                   T are respectively given by
                                                                   2
                                                                |Q|
                                                            R =
                                                                   2
                                                                |P|
                                                                   2
                                                                |S|
                                                                                        (3.48)
                                                            T =
                                                                   2
                                                                |P|
                                     Similarly, for region II, the Schr¨odinger equation is given by
                                   Eq. (3.37). The wavefunction is therefore
                                                                 κx
                                                                       −κx
                                                                   + Ve
                                                      ψ II (x) = Ue
                                                                                        (3.49)
                                     To determine the coefficients in the wavefunctions, we make use
                                   of boundary conditions again.
                                     At x = 0,
                                                               dψ I
                                                                      dψ II
                                              ψ I (0) = ψ II (0) and
                                                                   =
                                                                dx
                                                                      dx
                                             P + Q = U + V and ik(P − Q) = κ(U − V)
                                     At x = W,
                                                                  dψ III
                                                           dψ II
                                      ψ II (W) = ψ III (W) and
                                                                =
                                                                   dx
                                                            dx
                                                         −κW
                                          ikW
                                                                    ikW
                                                  κW
                                                             and ikSe
                                                     + Ve
                                             = Ue
                                        Se
                                                                        = κ(Ue
                                                                                         )
                                   which can be simplified to the following equations:
                                                                2
                                                            2
                                                          (k + κ )(e
                                                   Q
                                                                    2κW
                                                                       − 1)
                                                                                        (3.50)
                                                     =
                                                                  2
                                                        2κW
                                                   P
                                                        e
                                                            (k + iκ) − (k − iκ)
                                                                 −ikW κW
                                                   S  RPS: PSP0007 - Science-at-Nanoscale 2  κW  − Ve −κW (3.47)  ch03
                                                                     e
                                                            4ikκe
                                                     =  2κW       2         2           (3.51)
                                                   P    e   (k + iκ) − (k − iκ)
                                     Thus the reflection coefficient R, (Eq. 3.47) and the transmission
                                   coefficient T, (Eq. 3.48) can be expressed as
                                                                          −1
                                                        "                #
                                                              4E(V o − E)
                                                   R = 1 +                              (3.52)
                                                              2    2
                                                            V sinh (κW)
                                                              o
                                                                          −1
                                                        "                #
                                                              2    2
                                                            V sinh (κW)
                                                              o
                                                   T = 1 +                              (3.53)
                                                              4E(V o − E)
                                                      x
                                                                         x
                                                     e −e −x            e +e −x
                                   Note that sinh(x) =  2  and cosh(x) =   2  .
   53   54   55   56   57   58   59   60   61   62   63