Page 64 - Science at the nanoscale
P. 64

9:2
                                                     RPS: PSP0007 - Science-at-Nanoscale
                   June 9, 2009
                              Brief Review of Quantum Mechanics
                          54
                                     Angular momentum along z direction operator
                                                                   h
                                                                     Y
                                                          L z Y = m
                                                                                        (3.65)
                                                                 l
                                                                  2π
                                   where the complete form for Eq. (3.64) can be written as
                                        2
                                                                        2
                                                                                        2
                                                                       ∂ Y

                                                                   1
                                              1
                                                                                       h


                                       h
                                                  ∂
                                                     sin θ
                                    −
                                                                            = −l(l + 1)
                                         2
                                                                                         2
                                                                   2
                                                          ∂θ
                                                                                      4π
                                           sin(θ) ∂θ
                                      4π
                                                                                        (3.66)
                                     On the other hand, the radial function satisfies the following
                                   equation:
                                          2
                                                                            2
                                                2

                                                                          Ze
                                         h

                                               ∂
                                                    2 ∂
                                                          l(l + 1)
                                                        −
                                                  +
                                     −
                                                                   R(r) −
                                           2
                                                2
                                                    r ∂r
                                                             r
                                               ∂r
                                       8mπ
                                                                                        (3.67)
                                     Once the solutions to the wavefunction are obtained, we can
                                          2
                                   plot |ψ| and this gives the probability density distribution; the
                                   probability of finding the electron in any region is equal to an
                                   integral of the probability density over the region. Depending
                                   on the quantum numbers of the electron, we can classify differ-
                                   ent wavefunction for the electron in different states. States corre-
                                   sponding to different l are in different orbitals. Table 3.1 gives a
                                   summary of the various states for the hydrogen atom.
                                              Table 3.2 Mathematical equations for the
                                              various spherical harmonic functions.
                                                 Angular Function
                                              Y l,m l
                                                    = 1/ 4π
                                              Y 0,0
                                                      √  √ ∂Y    2 +  sin (θ) ∂φ 2 4πε 0 r  R(r) = ER(r) Y  ch03
                                              Y 1,0  =  3/4π cos(θ)
                                                       √
                                              Y 1,1  = − 3/8π sin(θ)e iφ
                                                      √
                                              Y 1,−1  =  3/8π sin(θ)e  −iφ
                                                       √
                                                      1          2
                                              Y 2,0  =   5/4π(3 cos (θ) − 1)
                                                      2
                                                       √
                                              Y 2,1  = − 15/8π sin(θ) cos(θ)e  iφ
                                                      √
                                              Y 2,−1  =  15/8π sin(θ) cos(θ)e −iφ
                                                       √
                                                      1         2   i2φ
                                              Y 2,2  =   15/2π sin (θ)e
                                                      4
                                                      1  √      2   −i2φ
                                              Y 2,−2  =  15/2π sin (θ)e
                                                      4
   59   60   61   62   63   64   65   66   67   68   69