Page 226 - Statistics for Environmental Engineers
P. 226

L1592_frame_C25.fm  Page 228  Tuesday, December 18, 2001  2:45 PM









                                         TABLE 25.4
                                         Analysis of Variance Table for the Foundry Waste Example
                                         Source of   Sum of
                                         Variation  Squares    df      MS        F
                                         Average     0.10693    1
                                         Batches     0.00367    2    0.001835   367
                                         Specimens   0.00624    9    0.000693   139
                                         Tests       0.00006   12    0.000005
                                         Total       0.11690   24

                        The sum of squares for each variance component is:

                                         n b  n s  n t
                              Total SS t ∑ ∑ ∑ y bst =  0.082 + 0.084 +  …  + 0.044 =  0.11690
                                      =
                                                                          2
                                                               2
                                                2
                                         b=1  s=1  t=1
                                                        (
                           Average SS ave =  n b n s n t y =  34() 2() 0.06675) =  0.106934
                                                                2
                                              2
                                            n b
                              Batch SS b =  n s n t∑ ( y b –  y) 2
                                            b=1
                                      =  4 () 2() 0.0840 0.06675) +[ (  –  2  ( 0.0606 0.06675) + ( 0.0556 0.06675) ]
                                                                                                2
                                                                               2
                                                                      –
                                                                                        –
                                      =  0.003671
                                          n b  n s
                           Specimen SS s =  n t ∑∑  ( y bs – y b ) 2
                                          b=1  s=1
                                      =  2 0.083 0.0840) +[ (  –  2  ( 0.1085 0.0840) +  …  +  ( 0.047 0.0556) ]
                                                                        2
                                                                                           2
                                                                –
                                                                                    –
                                      =  0.000624
                                         n b  n s  n t
                               Test SS t ∑ ∑ ∑ ( y bst –  y bs ) 2
                                      =
                                         b=1  s=1  t=1
                                                                                      2
                                                                   2
                                                    2
                                      =  ( 0.082 0.083) +  ( 0.084 0.083) +  …  +  ( 0.044 0.0470) =  0.000057
                                                             –
                                                                               –
                                              –
                        Table 25.4 gives the full analysis of variance table, with sums of squares, degrees of freedom, and
                       mean square values. The mean squares (the sums of squares divided by the respective degrees of freedom)
                       are MS b  = 0.001835, MS s  = 0.000693, and MS t  = 0.000005. The mean squares are used to estimate the
                                                                                2
                                                               2   MS s  estimates n t σ s +  2
                       variances.  Table 25.3 shows that MS t  estimates σ t ,     σ t ,   and MS b  estimates
                       n s n t σ b + σ s +  σ t .   Using these relations with the computed mean square values gives the following
                                 2
                                     2
                           2
                              n t
                       estimates:
                                         σ ˆ t =  MS t =  0.000005
                                          2
                                                                 –
                                                         --------------------------------------------------- =
                                              -------------------------- =
                                         σ ˆ s =  MS s –  MS t  0.000693 0.000005  0.000344
                                          2
                                                 n t             2
                                                                 –
                                              -------------------------- =
                                                         --------------------------------------------------- =
                                         σ ˆ b =  MS b –  MS s  0.001836 0.000693  0.000143
                                          2
                                                 n s n t       4 ×  2
                        The analysis shows that the variance between specimens is about twice the variance of between batches
                       and about 60 times the  variance of the chemical analysis of copper. Variation in the actual copper
                       measurements is small relative to other variance components. Extensive replication of copper measure-
                       ments scarcely helps in reducing the total variance of the solid waste characterization program. This
                       suggests making only enough replicate copper measurements to maintain quality control and putting the
                       major effort into reducing other variance components.
                       © 2002 By CRC Press LLC
   221   222   223   224   225   226   227   228   229   230   231