Page 621 - The Mechatronics Handbook
P. 621

0066_Frame_C20  Page 91  Wednesday, January 9, 2002  5:49 PM









                         The following magnitudes are differentiated (the subscripts 1 and 2 refer, respectively, to the rear 1
                       and front 2 chambers of the pistons):

                         A    piston thrust section
                              disturbance of force acting on the piston rod
                         F e
                         G    mass flow rate of air entering the chamber
                         M    mass of the translating parts of the piston
                         n    air polytropic coefficient
                         P    cylinder chamber pressure
                              initial cylinder chamber pressure
                         P i
                              ambient pressure
                         P amb
                         R    air constant
                              initial cylinder chamber air temperature
                         T i
                         x    rod position measured starting from x 0
                              piston half stroke
                         x 0
                              dead band
                         x m
                         γ    coefficient of viscous friction
                         The continuity and equilibrium equations are given by:


                                                                            P 1 n  dx
                                       -------- =  ------------------------------------------------------------------------- –  -------------------------------- ------  (20.58)
                                                      G 1 nRT 1i
                                       dP 1
                                               (
                                                          (
                                        dt   A 1 x 0 +  x m1 + x) P 1 /P 1i ) ( 1 –  n)/n  ( x 0 + x m1 +  x) dt
                                                                            P 2 n  dx
                                       -------- =  ------------------------------------------------------------------------ +  --------------------------------- ------  (20.59)
                                                      G 2 nRT 2i
                                       dP 2
                                               (
                                        dt   A 2 x 0 +  x m2 – x) P 2 /P 2i ) ( 1 –  n)/n  ( x 0 +  x m2  − x) dt
                                                          (
                                           2
                                          d x   ( P 1 –  P amb )A 1 –  ( P 2 –  P amb )A 2 –  F e –  g dx/dt
                                          -------- =  ---------------------------------------------------------------------------------------------------------  (20.60)
                                          dt 2                  M
                         The flow proportional valve V 1  is modeled as a variable section pneumatic resistance. The equations
                       used for calculating mass flow rate G through a pneumatic resistance, characterized by a conductance C
                       and by a critical ration b, in accordance with ISO 6358, which connects two environments A and B, with
                       respective pressures of P A  and P B , taken to be positive in the A → B direction, are


                                                                          P B
                                             sonic flow:  G =  r 0 P A C  for 0 <  ----- ≤  b   (20.61)
                                                                          P A

                                                                                   ----- ≤
                                                                 -----------------------
                                    subsonic flow:  G =  r 0 P A C 1 –    P B /P A –  b  2  for b <  P B  1  (20.62)
                                                                   1 b 
                                                                    –
                                                                                   P A
                                                                           P A
                                             sonic flow:  G =  – r 0 P B C  for 0 <  ----- ≤  b  (20.63)
                                                                           P B

                                                                                   P A
                                                                 -----------------------
                                    subsonic flow:  G =  – r 0 P B C 1 –   P A /P B –  b   2  for b <  ----- ≤  1  (20.64)
                                                                   1 b 
                                                                     –
                                                                                   P B
                       ©2002 CRC Press LLC
   616   617   618   619   620   621   622   623   624   625   626