Page 48 - Petroleum Production Engineering, A Computer-Assisted Approach
P. 48

Guo, Boyun / Computer Assited Petroleum Production Engg 0750682701_chap03 Final Proof page 38 3.1.2007 8:30pm Compositor Name: SJoearun




               3/38  PETROLEUM PRODUCTION ENGINEERING FUNDAMENTALS
                              3,500

                              3,000                             Vogel's model
                                                                Fetkovich's model
                              2,500
                             p wf  (psai)  2,000

                              1,500

                              1,000

                               500

                                 0
                                   0     200     400     600     800    1,000   1,200
                                                       q (stb/day)
                                     Figure 3.14 IPR curves for Example Problem 3.5.



                                                         X
                                                          n
               drawn through two points at AOF and shut-in bottom-  J
               hole pressure (p wfo ). It is apparent from Eq. (3.39) that  i
                                                         i¼1
                     X      X                               (          "                   2 #)
                     n
                             n

               AOF ¼   J   p i ¼  AOF i           (3:40)    (  p i   p bi ) þ  p bi  1   0:2  p wf    0:8  p wf
                         p
                                                              p
                        i
                     i¼1    i¼1                                      1:8      p bi     p bi
               and
                                                          ¼ q wh ,
                    P
                    n
                       p
                      J   p i                                                               (3:45)
                      i
               p wfo ¼  i¼1  :                    (3:41)  which gives
                    P
                     n
                      J   i                                   X              X
                                                                              n
                                                               n
                    i¼1
                                                         AOF ¼   J (  p i   0:44p bi ) ¼  AOF i  (3:46)
                                                                   p
                                                                  i
               It should be borne in mind that p wfo is a dynamic bottom-  i¼1  i¼1
               hole pressure because of cross-flow between layers.  and
                                                            s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi



                                                                   P     P       P J    P n    2  P n
                                                                   n
                                                                         n
                                                                                  n


                                                                            p
               3.5.1.2 Two-Phase Flow                         147 0:56  J i p bi þ  J i (  p i   p bi )  p bi i  þ  J i       J i
               For reservoir layers containing saturated oils, two-phase  p wfo ¼  i¼1  i¼1  P J    i¼1  i¼1  i¼1  :
                                                                             n
               flow is expected. Then Eq. (3.38) takes a form of polyno-    8  i¼1  p bi i
               mial of order greater than 1. If Vogel’s IPR model is used,                  (3:47)
               Eq. (3.38) becomes
                     "                  #                Again, p wfo is a dynamic bottom-hole pressure because of
                n
               X     p                  2                cross-flow between layers.
                  J   p i  1   0:2  p wf    0:8  p wf  ¼ q wh ,  (3:42)
                   i
                  1:8
               i¼1            p p i    p p i
                                                         3.5.2 Applications
               which gives
                                                         The equations presented in the previous section can be
                     n
                     X    p  X                           readily used for generation of a composite IPR curve if
                             n
                        i
               AOF ¼   J   p i  ¼  AOF i          (3:43)
                        1:8                              all J are known. Although numerous equations have been
                     i¼1    i¼1                             i
                                                         proposed to estimate J for different types of wells, it is
                                                                         i

               and                                       always recommended to determine J based on flow tests
                                                                                  i
                    s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  of individual layers. If the tested rate (q i ) was obtained at a

                        n
                                   n
                             n
                       P    P J    P    2  P             wellbore pressure (p wfi ) that is greater than the bubble-
                                          n

                           p
                     80  J   p i  i  þ  J   i     J i    point pressure in layer i, the productivity index J can be

                          i
                       i¼1  i¼1    p p i  i¼1  i¼1                                        i
               p wfo ¼          n             :   (3:44)  determined by
                               P J
                              8   i
                                    p p i                      q i
                               i¼1                       J ¼      :                         (3:48)
                                                          i
                                                              p p i   p wfi
               Again, p wfo is a dynamic bottom-hole pressure because of
               cross-flow between layers.                If the tested rate (q i ) was obtained at a wellbore pressure
                                                         (p wfi ) that is less than the bubble-point pressure in layer i,

                                                         the productivity index J should be determined by
                                                                         i
               3.5.1.3 Partial Two-Phase Flow                             q i
               The generalized Vogel IPR model can be used to describe  J ¼                2   :  (3:49)
                                                          i
                                                             p
               well inflow from multilayer reservoirs where reservoir  (  p i   p bi ) þ  p bi  1   0:2  p wfi    0:8  p wfi
                                                                    1:8
                                                                                    p bi
                                                                             p bi
               pressures are greater than oil bubble pressures and the

               wellbore pressure is below these bubble-point pressures.  With J ,   p i , and p bi known, the composite IPR can be
                                                               p
                                                              i
               Equation (3.38) takes the form            generated using Eq. (3.45).
   43   44   45   46   47   48   49   50   51   52   53