Page 241 - Advanced Organic Chemistry Part A - Structure and Mechanisms, 5th ed (2007) - Carey _ Sundberg
P. 241

selectivity. Lipases from Candida rugosa (formerly Candida cylindracea), C. antartica,  221
          and C. lipolytica are also used frequently. 222  Like the esterases, lipases can act as
          hydrolysis catalysts toward esters or as acylation catalysts toward alcohols. Unlike  TOPIC 2.2
          PLE, the lipases have a specific type of natural substrate, namely triacyl glycerides.  Enzymatic Resolution
                                                                                     and Desymmetrization
          They are somewhat more selective in terms of substrate than PLE. Generally, neither
           , -disubstituted carboxylates nor esters of tertiary alcohols are accepted as substrates.
          As with PLE, either kinetic resolution or desymmetrization of prochiral reactants can
          be achieved. The enantioselectivity of lipases depends upon discrimination between
          the enantiomeric substrates at the active site. A large hydrophobic site acts as the
          receptor for the largest nonpolar substituent.
              Some examples of some lipase-catalyzed reactions are given in Scheme 2.14. The
          first three examples in Scheme 2.14 are acylations. Entries 1 and 2 are enantioselective


                    Scheme 2.14. Representative Resolutions Using Various Lipases
                       OH
                                                      OH                O CCH
                                PPL                                       2  3
           1 a  CH 2 =CH(CH ) CHCH
                      2 8  3                CH =CH(CH ) CHCH  + CH =CH(CH ) CHCH
                               CH =CHO CCH 3  2     2 8   3      2     2 8   3
                                     2
                                 2
                               diisopropyl ether  96% e.e.        97% e.e.
                      OH
                                                     OH             OH
           2 b      CH CCH OH PPL, MTBE
               PhCH 2  2  2                   PhCH CH CCH OH + PhCH CH CCH O CCH 3
                                                                 2
                                                                   2
                                                                       2
                                                                         2
                                                 2
                                                    2
                                                        2
                         I  CH =CHO CCH
                      CH 2     2   2   3             CH 2 I         CH I
                                                                      2
                                           S-enantiomer, 94% e.e.  R-enantiomer, > 99% e.e.
           3 c  PhCH(CH CH OH)  PPL        PhCHCH O CCH
                      2  2                       2  2  3
                            CH =CHO CCH
                2              2   2   3
                                             CH OH    R-enantiomer > 95% e.e.
                                               2
                 CH                                          CH
           4 d     3                     CH                    3
                             PPL, pH 7.4    3
                       O  O                            +             O
               C H O C      10 % acetone  C H O C  O  O    HO C   O
                   2
                2 5
                                                              2
                                           2
                                        2 5
                                             35 % e.e.        89% e.e.
                   2
           5 e  PhCH OCH 2           PhCH OCH 2
                                         2
                               PPL, pH 7
                        O 2 CCH 3                CCH
                                               O 2  3
                       O 2 CCH 3
                                              OH
                                                  > 95% e.e.
           6 f
                                        pseudomonas cepacia
                                        lipase
                                                                         2
               CH CO CH 2  N  CH 2 O CCH 3              CH CO CH 2  N  CH O CCH 3
                                                                           2
                                                          3
                                                             2
                                  2
                    2
                  3
                                        20% DMSO, ph 7.5
                          CH Ph                                    CH 2 Ph
                            2
                                                          S,S-enantiomer  59% e.e.
                                                            CO CH
                                                         CH 3  2  2  N  CH 2 OH
                                                                       Ph
                                                                    CH 2
                                                          R,R-enantiomer  81% e.e.
           a. A. Sharma, S. Sankaranarayanan, and S. Chattopadhyay, J. Org. Chem., 61, 1814 (1996).
           b. S.-T. Chen and J.-M. Fang, J. Org. Chem., 62, 4349 (1997).
           c. A. Rumbero, I. Borreguero, J. V. Sinisterra, and A. R. Alcantara, Tetrahedron, 55, 14947 (1999).
           d. G. Pitacco, A. Sessanta, O. Santi, and E. Valentin, Tetrahedron: Asymmetry, 11, 3263 (2000).
           e. I. C. Cotterill, P. B. Cox, A. F. Drake, D. M. LeGrand, E. J. Hutchinson, R. Latouche, R. B. Pettman, R. J. Pryce,
            S. M. Roberts, G. Ryback, V. Sik, and J. O. Williams, J. Chem. Soc., Perkin Trans. 1, 3071 (1991).
           f. Y. Kawanami, H. Moriya, Y. Goto, K. Tsukao, and M. Hashimoto, Tetrahedron, 52, 565 (1996).
          222
             F. Theil, Chem. Rev., 95, 2203 (1995).
   236   237   238   239   240   241   242   243   244   245   246