Page 529 - Advanced Organic Chemistry Part A - Structure and Mechanisms, 5th ed (2007) - Carey _ Sundberg
P. 529

510               It has been suggested that the TS for DMDO oxidation of electron-poor alkenes, such
                       as acrylonitrile, has a dominant nucleophilic component. 147  DMDO oxidations have
     CHAPTER 5         a fairly high sensitivity to steric effect. The Z-isomers of alkenes are usually more
     Polar Addition    reactive than the E-isomers because in the former case the reagent can avoid the alkyl
     and Elimination         148
     Reactions         groups.  We say more about this in Section 5.8.






                                Z-3-hexene     E-3-hexene    Z-2,5-dimethyl  E-2,5-dimethyl
                                                             -3-hexene    -3-hexene
                                      rate ratio:  8.3:1
                                                                 rate ratio: 17:1
                           Similarly to peroxycarboxylic acids, DMDO is subject to cis or syn stereose-
                       lectivity by hydroxy and other hydrogen-bonding functional groups. 149  The effect is
                       strongest in nonpolar solvents. For other substituents, both steric and polar factors seem
                       to have an influence, and several complex reactants have shown good stereoselectivity,
                       although the precise origin of the stereoselectivity is not always evident. 150
                           Other ketones apart from acetone can be used for in situ generation of dioxi-
                       ranes by reaction with peroxysulfate or another suitable peroxide. More electrophilic
                       ketones give more reactive dioxiranes. 3-Methyl-3-trifluoromethyldioxirane is a more
                       reactive analog of DMDO. 151  This reagent, which can be generated in situ from
                       1,1,1-trifluoroacetone, is capable of oxidizing less reactive compounds such as methyl
                       cinnamate.

                                                         O
                                                      CF CCH 3
                                                        3
                                                                      O
                                                      HOOSO K
                                                            3
                                   PhCH  CHCO CH 3                PhCH  CHCO 2 CH 3
                                              2
                                                     CH CN, H O
                                                       3
                                                            2
                                                                                       Ref. 152
                       Hexafluoroacetone and hydrogen peroxide in buffered aqueous solution epoxi-
                       dizes alkenes and allylic alcohols. 153  Other fluoroketones also function as epoxi-
                       dation catalysts. 154 155  N,N-dialkylpiperidin-4-one salts are also good catalysts for
                       147
                          D. V. Deubel, J. Org. Chem., 66, 3790 (2001).
                       148   A. L. Baumstark and C. J. McCloskey, Tetrahedron Lett., 28, 3311 (1987); A. L. Baumstark and
                          P. C. Vasquez, J. Org. Chem., 53, 3437 (1988).
                       149
                          R. W. Murray, M. Singh, B. L. Williams, and H. M. Moncrieff, J. Org. Chem., 61, 1830 (1996);
                          G. Asensio, C. Boix-Bernardini, C. Andreu, M. E. Gonzalez-Nunez, R. Mello, J. O. Edwards, and
                          G. B. Carpenter, J. Org. Chem., 64, 4705 (1999).
                       150   R. C. Cambie, A. C. Grimsdale, P. S. Rutledge, M. F. Walker, and A. D. Woodgate, Austr. J. Chem.,
                          44, 1553 (1991); P. Boricelli and P. Lupattelli, J. Org. Chem., 59, 4304 (1994); R. Curci, A. Detomaso,
                          T. Prencipe, and G. B. Carpenter, J. Am. Chem. Soc., 116, 8112 (1994); T. C. Henninger, M. Sabat,
                          and R. J. Sundberg, Tetrahedron, 52, 14403 (1996).
                       151   R. Mello, M. Fiorentino, O. Sciacovelli, and R. Curci, J. Org. Chem., 53, 3890 (1988).
                       152
                          D. Yang, M.-K. Wong, and Y.-C. Yip, J. Org. Chem., 60, 3887 (1995).
                       153   R. P. Heggs and B. Ganem, J. Am. Chem. Soc., 101, 2484 (1979); A. J. Biloski, R. P. Hegge, and
                          B. Ganem, Synthesis, 810 (1980); W. Adam, H.-G. Degen, and C. R. Saha-Moller, J. Org. Chem., 64,
                          1274 (1999).
                       154   E. L. Grocock, B.A. Marples, and R. C. Toon, Tetrhahedron, 56, 989 (2000).
                       155
                          J. Legros, B. Crousse, J. Bourdon, D. Bonnet-Delpon, and J.-P. Begue, Tetrahedron Lett., 42, 4463
                          (2001).
   524   525   526   527   528   529   530   531   532   533   534