Page 528 - Advanced Organic Chemistry Part A - Structure and Mechanisms, 5th ed (2007) - Carey _ Sundberg
P. 528

509
                              HO SO 3 –       O  OSO 3 –              O
                                2
                  (CH ) C  O           (CH ) C                 (CH ) C                    SECTION 5.5
                                          3 2
                                                                  3 2
                     3 2
                                              O  H                     O               Addition Reactions
                                                                                       Involving Epoxides
          Higher concentrations of DMDO can be obtained by extraction of a 1:1 aqueous
          dilution of the distillate by CH Cl , CHCl , or CCl . 140  Other improvements in conve-
                                                   4
                                            3
                                   2
                                      2
          nience have been described, 141  including in situ generation of DMDO under phase
          transfer conditions. 142
                                        (CH ) C  O
                                          3 2
                                                         O
                                        HOOSO 3 K
                  CH CH  CH(CH ) OCH Ph  pH 7.8     CH 3 CH  CH(CH ) OCH Ph
                                   2
                              2 3
                    3
                                                                 2 3
                                                                      2
                                              +
                                                   –
                                        n –Bu N HSO 4
                                            4
          The yields and rates of oxidation by DMDO under these in situ conditions depend on
          pH and other reaction conditions. 143
              Various computational models of the TS show that the reaction occurs by a
          concerted mechanism that is quite similar to that for peroxy acids. 144  Kinetics and
          isotope effects are consistent with this mechanism. 145
                            O  CH 3                 +    O  C(CH )
                                                                3 2
                          H O   CH 3              H O
                        R      H                R     H
                              R                      R
          For example, the NPA charges for the DMDO and performic oxidations of ethene
          have been compared. 146  The ratio of the electrophilic interaction involving electron
          density transfer from the alkene to the O−O 
 orbitals can be compared with the
                                                  ∗
          nucleophilic component involving back donation from the oxidant to the alkene   ∗
          orbital. By this comparison, performic acid is somewhat more electrophilic.
                                 O
                                     H          O  CH 3
                               H        ratio
                            H   O  O    1.55  H O    CH 3  ratio
                                   H                       1.32
                            H               H     H
                                  H
                                                 H
          140   M. Gilbert, M. Ferrer, F. Sanchez-Baeza, and A. Messequer, Tetrahedron, 53, 8643 (1997).
          141
             W. Adam, J. Bialoas, and L. Hadjiaropoglou, Chem. Ber., 124, 2377 (1991).
          142   S. E. Denmark, D. C. Forbes, D. S. Hays, J. S. DePue, and R. G. Wilde, J. Org. Chem., 60, 1391
             (1995).
          143   M. Frohn, Z.-X. Wang, and Y. Shi, J. Org. Chem., 63, 6425 (1998); A. O’Connell, T. Smyth, and
             B. K. Hodnett, J. Chem. Tech. Biotech., 72, 60 (1998).
          144
             R. D. Bach, M. N. Glukhovtsev, C. Gonzalez, M. Marquez, C. M. Estevez, A. G. Baboul, and H. Schlegel,
             J. Phys. Chem., 101, 6092 (1997); M. Freccero, R. Gandolfi, M. Sarzi-Amade, and A. Rastelli, Tetra-
             hedron, 54, 6123 (1998); J. Liu, K. N. Houk, A. Dinoi, C. Fusco, and R. Curci, J. Org. Chem., 63,
             8565 (1998).
          145   W. Adam, R. Paredes, A. K. Smerz, and L. A. Veloza, Liebigs Ann. Chem., 547 (1997); A. L. Baumstark,
             E. Michalenabaez, A. M. Navarro, and H. D. Banks, Heterocycl. Commun., 3, 393 (1997); Y. Angelis,
             X. J. Zhang, and M. Orfanopoulos, Tetrahedron Lett., 37, 5991 (1996).
          146
             D. V. Deubel, G. Frenking, H. M. Senn, and J. Sundermeyer, J. Chem. Soc., Chem. Commun., 2469
             (2000).
   523   524   525   526   527   528   529   530   531   532   533