Page 940 - Advanced Organic Chemistry Part A - Structure and Mechanisms, 5th ed (2007) - Carey _ Sundberg
P. 940

924               advanced MO and DFT calculations support the idea of an aromatic TS. 243  The TS can
                       range in character from a 1,4-cyclohexadiyl diradical to two nearly independent allyl
     CHAPTER 10                                                                           244
                       radicals, depending on whether bond making or bond breaking is more advanced.
     Concerted Pericyclic  The electrons remain paired in either case, however, and the two representations are
     Reactions
                       best considered to be resonance structures. The energy surface in the transition region
                       seems to be quite flat; that is, there does not seem to be a strong difference in the
                       energy over the range from 1.64 to 2.19 Å. 245
                                       .
                                           .

                       Substituent effects provide other insights into the nature of the TS for the Cope
                       rearrangement. Conjugated substituents at C(2), C(3), C(4), or C(5) accelerate the
                       reaction. 246  Donor substituents at C(2) and C(3) have an accelerating effect. 247  The net
                       effect on the reaction rate of any substituent is determined by the relative stabilization
                       of the TS and ground state. 248  The effect of substituents on the stabilization of the
                       TS can be analyzed by considering their effect on two interacting allyl systems. We
                       consider the case of phenyl substituents in detail.
                                     X             X              X             X
                                      2
                                 Y      1      Y               Y            Y
                                  3                                .
                                  4     6                          .
                                     5
                                                                                        ‡
                       As shown in Table 10.7, phenyl substituents at positions 2 and 3 reduce the  H .On
                       the other hand, a 1-substituent, which is conjugated in the reactant but not the product,
                                     ‡
                       increases the  H .
                           The first step in interpreting these substituent effects is to recognize how they
                       affect the reactant and product energy. Substituents that are conjugated, such as
                       cyano and phenyl, are more stabilizing on a double bond than at a saturated carbon.
                       For example, the rearrangement of 3,4-diphenyl-1,5-hexadiene to 1,6-diphenyl-1,5-
                       hexadiene is exothermic by 10.2 kcal/mol, indicating about 5 kcal/mol of stabilization
                       at each conjugated double bond.

                                           Ph                    Ph

                                            Ph                   Ph
                       243
                          D. A. Hrovat, W. T. Borden, R. L. Vance, N. G. Rondan, K. N. Houk, and K. Morokuma, J. Am. Chem.
                          Soc., 112, 2018 (1990); D. A. Hrovat, K Morokuma, and W. T. Borden, J. Am. Chem. Soc., 116, 1072
                          (1994); O. Wiest, K. A. Black and K. N. Houk, J. Am. Chem. Soc., 116, 10336 (1994); M. D. Davidson,
                          I. H. Hillier, and M. A.Vincent, Chem. Phys. Lett., 246, 536 (1995); S. Yamada, S. Okumoto, and
                          T. Hayashi, J. Org. Chem., 61, 6218 (1996); W. T. Borden and E. R. Davidson, Acc. Chem. Res., 29,
                          57 (1995); P. M. Kozlowski, M. Dupuis, and E. R. Davidson, J. Am. Chem. Soc., 117, 774 (1995);
                          K. N. Houk, B. R. Beno, M. Nendel, K. Block, H.-Y. Yoo, S. Wilsey, and J. K. Lee, Theochem, 398,
                          169 (1997); E. R. Davidson, Chem. Phys. Lett., 284, 301 (1998).
                       244   J. J. Gajewski and N. D. Conrad, J. Am. Chem. Soc., 100, 6268, 6269 (1978); J. J. Gajewski and
                          K. E. Gilbert, J. Org. Chem., 49, 11 (1984).
                       245
                          P. M. Kozlowski, M. Dupuis, and E. R. Davidson, J. Am. Chem. Soc., 117, 774 (1995); E. R. Davidson,
                          J. Phys. Chem., 100, 6161 (1996).
                       246
                          M. J. S. Dewar and L. E. Wade, J. Am. Chem. Soc., 95, 290 (1972); J. Am. Chem. Soc., 99, 4417
                          (1977); R. Wehrli, H. Schmid, D. E. Bellus, and H. J. Hansen, Helv. Chim. Acta, 60, 1325 (1977).
                       247   M. Dollinger, W. Henning, and W. Kirmse, Chem. Ber., 115, 2309 (1982).
                       248
                          For analysis of substituent effects in molecular orbital terminology, see B. K. Carpenter, Tetrahedron,
                          34, 1877 (1978); F. Delbecq and N. T. Anh, Nouv. J. Chim., 7, 505 (1983).
   935   936   937   938   939   940   941   942   943   944   945