Page 945 - Advanced Organic Chemistry Part A - Structure and Mechanisms, 5th ed (2007) - Carey _ Sundberg
P. 945

Before we go into these reactions in detail, let us examine vinylcyclopropane itself,  929
          which rearranges at high temperature to cyclopentene. 254
                                                                                         SECTION 10.6
                                                                                           Sigmatropic
                                                                                         Rearrangements

                                                 4 electrons, 0 nodes
                                                 anti-aromatic

          The most geometrically accessible TS corresponds to a forbidden 1,3-suprafacial alkyl
          shift with retention of configuration. The rearrangement requires a temperature of at

          least 200 –300 C. 255  The measured E is about 50 kcal/mol, which is consistent with a

                                         a
          stepwise reaction beginning with rupture of a cyclopropane bond and formation of an
          allylic fragment. 256  Support for a nonconcerted mechanism comes from the observation
          that cis-trans isomerization occurs faster than the rearrangement. This isomerization
          presumably occurs by reversible cleavage of the C(1)−C(2) cyclopropane bond.
                                    .
                       350°C
             H      H            .            H      H  +  D     H  +  D
                               H    H            D           H            H
                D                 D
                                                47 %        47 %         6 %
                                                                          Ref. 257

          When this prior stereoisomerization is accounted for, the rearrangement is found
          to have resulted from a mixture of all possible suprafacial, antarafacial, inversion,
          and retention combinations in roughly equal amounts, indicating lack of stereoselec-
          tivity. 258  Thus, the rearrangement of vinylcyclopropane occurs with nearly complete
          bond rupture. Computational modeling of the reaction finds no intermediate, and the
          TS is diradical in character. 259
              A dramatic difference in reactivity is evident when cis-divinylcyclopropane is
          compared with vinylcyclopropane. 260  cis-Divinylcyclopropane can only be isolated
          at low temperature because it very rapidly undergoes Cope rearrangement to 1,4-
                                                         ‡
                                    ‡

          cycloheptatriene. 261  At 0 C  H is 18.8 kcal/mol and  S is −9 4 eu.
                                     H


                                     H
          254
             C. G. Overberger and A. E. Borchert, J. Am. Chem. Soc., 82, 1007 (1960).
          255
             T. Hudlicky, T. M. Kutchan, and S. M. Naqui, Org. React., 33, 247 (1984); T. Hudlicky and J. D. Price,
             Chem. Rev., 89, 1467 (1989); J. E.Baldwin, in Chemistry of the Cyclopropyl Group, Vol. 2, Z. Rapoport,
             ed., Wiley, 1995, pp. 469–494.
          256   D. K. Lewis, D. J. Charney, B. L. Kalra, A. M. Plate, M. H. Woodard, S. J. Cianciosi, and J. E. Baldwin,
             J. Phys. Chem., 101, 4097 (1997).
          257   M. R. Willcott and V. H. Cargle, J. Am. Chem. Soc., 89, 723 (1967).
          258
             J. J. Baldwin, K. A. Villarica, D. I. Freedberg, and F. A. L. Anet, J. Am. Chem. Soc., 116, 10845 (1994).
          259   E. R. Davidson and J. J. Gajewski, J. Am. Chem. Soc., 119, 10543 (1997); K. N. Houk, M. Nendal,
             O. Wiest, and J. W. Storer, J. Am. Chem. Soc., 119, 10545 (1997); J. E. Baldwin, J. Comput. Chem.,
             19, 222 (1998).
          260   T. Hudlicky, R. Fan, J. W. Reed, and K. G. Gadamasetti, Org. React., 41, 1 (1992).
          261
             J. M. Brown, B. T. Bolding, and J. F. Stofko, Jr., Chem. Commun., 319 (1973); M. Schneider, Angew.
             Chem. Int. Ed. Engl., 14, 707 (1975); M. P. Schneider and A. Rau, J. Am. Chem. Soc., 101, 4426 (1979).
   940   941   942   943   944   945   946   947   948   949   950