Page 58 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 58

30                                        Scheme 1.5. (Continued)

      CHAPTER 1        7 g                                              O
                                   O              I          O CCH
      Alkylation of Enolates            1) LDA, –78°C  CH 3  CH  2  3  CH 3
      and Other Carbon       (CH ) CHCCH 3                  3                        O 2 CCH 3
                               3 2
      Nucleophiles                                                     CH 3  CH 3  CH 3  61%
                                               –
                               O              O Li +      O             O
                                                            CH 3          CH 3
                        8 h        CH 3 Li, NH   CH 3  CH I        CH
                                           3           3     CH 3 +  3      CH 3
                                                             60%         2%
                                                                O
                                              –
                                O           O Li +
                                                                    CH CH  CH 2
                                                                      2
                                                           2
                        9 i                       CH 2  CHCH Br
                                      Li, NH 3
                                                                    CH
                                                CH              45%   3
                                   CH 3           3
                                                                trans/cis~20/1
                                                 H               H
                                       Li             CH (CH ) I
                       10 j                             3  2 3
                                      NH
                                          +–
                            O           3 Li O             O
                                                 H               H
                                                              (CH ) CH 3  43%
                                                                 2 3
                       a. M. Gall and H. O. House, Org. Synth., 52, 39 (1972).
                       b. S. C. Welch and S. Chayabunjonglerd, J. Am. Chem. Soc., 101, 6768 (1979).
                       c. G. Stork and P. F. Hudrlik, J. Am. Chem. Soc., 90, 4464 (1968).
                       d. P. L. Stotter and K. A. Hill, J. Am. Chem. Soc., 96, 6524 (1974).
                       e. I. Kuwajima, E. Nakamura, and M. Shimizu, J. Am. Chem. Soc., 104, 1025 (1982).
                       f. A. B. Smith, III, and R. Mewshaw, J. Org. Chem., 49, 3685 (1984).
                       g. Y. L. Li, C. Huang, W. Li, and Y. Li, Synth. Commun., 27, 4341 (1997).
                       h. H. A. Smith, B. J. L. Huff, W. J. Powers, III, and D. Caine, J. Org. Chem., 32, 2851 (1967).
                       i. D. Caine, S. T. Chao, and H. A. Smith, Org. Synth., 56, 52 (1977).
                       j. G. Stork, P. Rosen, N. Goldman, R. V. Coombs, and J. Tsujii, J. Am. Chem. Soc., 87, 275 (1965).
                       to the more-substituted enolate precedes alkylation. Entries 3 and 4 show regiospecific
                       generation of enolates by reaction of silyl enol ethers with methyllithium. Alkylation
                       can also be carried out using silyl enol ethers by generating the enolate by fluoride
                       ion. 63  Anhydrous tetraalkylammonium fluoride salts in anhydrous are normally the
                                       64
                       fluoride ion source. Entries 5 and 6 illustrate this method. Entry 7 shows the kinetic
                       deprotonation of 3-methylbutanone, followed by alkylation with a functionalized allylic
                       iodide. Entries 8, 9, and 10 are examples of alkylation of enolates generated by
                       reduction of enones. Entry 10 illustrates the preference for axial alkylation of the
                       2-(1)-decalone enolate.
                           In enolates formed by proton abstraction from  , -unsaturated ketones, there
                       are three potential sites for attack by electrophiles: the oxygen, the  -carbon, and
                       the  -carbon. The kinetically preferred site for both protonation and alkylation is the
                        -carbon. 65

                                                    δ–   δ−  δ−
                                                     O     β  γ
                                                         α

                        63   I. Kuwajima, E. Nakamura, and M. Shimizu, J. Am. Chem. Soc., 104, 1025 (1982).
                        64   A. B. Smith, III, and R. Mewshaw, J. Org. Chem., 49, 3685 (1984).
                        65
                          R. A. Lee, C. McAndrews, K. M. Patel, and W. Reusch, Tetrahedron Lett., 965 (1973);
                          J. A. Katzenellenbogen and A. L. Crumrine, J. Am. Chem. Soc., 96, 5662 (1974).
   53   54   55   56   57   58   59   60   61   62   63