Page 62 - Advanced Organic Chemistry Part B - Reactions & Synthesis
P. 62

34                                                                        CH 3
                                                         +
                                                       –
                                         2 LDA  CH 3  O Li 1) CH 3 (CH ) Br
                                                                  2 3
                           (CH ) CHCO H                                  CH (CH ) CCO H
      CHAPTER 1               3 2    2                          +          3  2 3   2
                                                       –
                                                      O Li +  2) H
                                                CH 3                            CH
      Alkylation of Enolates                                                       3
      and Other Carbon                                                               80%
      Nucleophiles
                           Nitriles can also be converted to anions and alkylated. Acetonitrile  pK DMSO  = 31 3
                       can be deprotonated, provided a strong nonnucleophilic base such as LDA is used.
                                                    1)
                                       LDA              O
                              CH C  N      LiCH C  N           (CH 3 3   2  2  2  N
                                                                  ) SiOCH CH CH C
                                 3
                                              2
                                       THF           2) (CH 3 3
                                                          ) SiCl
                                                                                  78%
                                                                                       Ref. 77
                       Phenylacetonitrile  pK DMSO  = 21 9  is considerably more acidic than acetonitrile.
                       Dialkylation has been used in the synthesis of meperidine, an analgesic substance. 78
                                                   NaNH                 steps
                               CH CN + CH N(CH CH Cl) 2  2         NCH 3               NCH 3
                                        3
                                             2
                                                2
                                 2
                                                              CN
                                                                                 CO CH CH 3
                                                                                       2
                                                                                    2
                                                                               meperidine
                           We will see in Section 1.2.6 that the enolates of imides are very useful in synthesis.
                       Particularly important are the enolates of chiral N-acyloxazolidinones.
                           Scheme 1.6 gives some examples of alkylation of esters, amides, and nitriles.
                       Entries 1 and 2 are representative ester alkylations involving low-temperature
                                     Scheme 1.6. Alkylation of Esters, Amides, and Nitriles
                       1 a              1) LDA, THF, –70°C         CO CH 3
                                                                     2
                               CO CH 3
                                  2
                                                                     2 6
                                        2) CH (CH 2 ) 3 I, HMPA, 25°C  (CH ) CH 3
                                            3
                                                                          ~90%
                       2 b
                                                        +
                                        1)     NCH(CH )  Li , –78°C  (CH ) CHCO C H
                         CH 3 (CH 2 ) 4 CO 2 C 2 H 5  3 2       CH 3  2 3   2 2 5
                                                                        CH CH CH CH
                                              2) CH CH CH CH Br           2  2  2  3
                                                           2
                                                     2
                                                        2
                                                  3
                                                                                 75%
                       3 c         H                              H
                           CH 3      O       1) LDA, DME  CH 3      O
                                         O                             O
                                                                          ) CH
                                             2) CH 2  CH(CH ) Br      (CH 2 3  CH 2
                                                        2 3
                                   CH 3      3) LDA, DME        H 3 C  CH 3    86%
                                             4) CH 3 I
                       4 d        O                                O
                                                            CH 3
                             H              1) LDA            H
                                  O                                O
                                   H     2) CH 3 I, HMPA           H
                                                                    82%
                                                                                      (Continued)
                        77   S. Murata and I. Matsuda, Synthesis, 221 (1978).
                        78
                          O. Eisleb, Ber., 74, 1433 (1941); cited in H. Kagi and K. Miescher, Helv. Chim. Acta, 32, 2489 (1949).
   57   58   59   60   61   62   63   64   65   66   67