Page 361 - Advances in Biomechanics and Tissue Regeneration
P. 361

358                17. SKIN MECHANOBIOLOGY AND BIOMECHANICS: FROM HOMEOSTASIS TO WOUND HEALING

           phenomenon leads to not only the remodeling of the damaged ECM but also contraction of the dermis. After wound
           repair, TGF-β1 is reduced, and the activity of myofibroblasts is reduced due to myofibroblast dedifferentiation to fibro-
           blasts [11]. These findings demonstrate that the focus of new therapeutics for the treatment of excisional wounds
           should go beyond skin mechanics and interfere with myofibroblasts mechanobiology. In fact, Kun et al. have recently
           shown accelerated healing and lower scar formation of mice excisional wounds by inhibiting FAK, one of the main
           mediators of mechanobiology [154]. This response was associated with the reduced action of myofibroblasts and
           reduced collagen deposition. Despite the increasing knowledge observed in the last years in the fields of skin mechan-
           obiology and biomechanics, the mechanobiological processes occurring in wound healing are still far from being
           totally understood. Better knowledge of these processes will be a breakthrough in the development of new therapies
           for a scarless wound healing.



                                                 17.5 FINAL REMARKS

              The growing knowledge of skin biomechanics and skin mechanobiology has greatly contributed to understand the
           importance of mechanical stress in skin homeostasis and in skin wound healing. Knowledge of the importance of
           mechanical stress in wound healing has potentiated the creation of new therapies to counteract the wound healing
           forces and improve the normal skin tensegrity. In addition to the mechanical off-loading therapies, other therapies
           that focus on skin mechanobiology events are a pathway to follow in the future. It is clear that strategies that aim
           for scarless wound regeneration should consider not only the cellular and biochemical milieu of the wound healing
           process but also the mechanical environment. Nonetheless, the future successes will greatly depend on a better under-
           standing of the molecular mechanisms involved in the skin response to the wound intrinsic mechanical forces as the
           stimuli and underlying mechanisms that drive wound healing to be elucidated.


           References

             [1] E.A. Gantwerker, D.B. Hom, Clin. Plast. Surg. 39 (2012) 85–97.
             [2] R.A. Kamel, J.F. Ong, E. Eriksson, J.P. Junker, E.J. Caterson, J. Am. Coll. Surg. 217 (2013) 533–555.
             [3] H. Oxlund, J. Manschot, A. Viidik, J. Biomech. 21 (1988) 213–218.
             [4] F.H. Silver, J.W. Freeman, D. DeVore, Skin Res. Technol. 7 (2001) 18–23.
             [5] K. Langer, Br. J. Plast. Surg. 31 (1978) 93–106.
             [6] M.H. Alireza Karimi Ahmad Shojaei, M. Navidbakhsh, A.M. Haghi, S.J.A. Sadati, Proc. Inst. Mech. Eng. Pt L J. Mater. Des. Appl. 0 (2015) 1–8.
             [7] G. Boyer, C. Pailler Mattei, J. Molimard, M. Pericoi, S. Laquieze, H. Zahouani, Med. Eng. Phys. 34 (2012) 172–178.
             [8] S. Girardeau, S. Mine, H. Pageon, D. Asselineau, Exp. Dermatol. 18 (2009) 704–711.
             [9] M. Hendriks, D. Brokken, W. Oomens, L. Bader, P. Baaijens, Med. Eng. Phys. 28 (2006) 259–266.
            [10] A. Ni Annaidh, K. Bruyere, M. Destrade, M.D. Gilchrist, M. Ottenio, J. Mech. Behav. Biomed. Mater. 5 (2012) 139–148.
            [11] J.J. Tomasek, G. Gabbiani, B. Hinz, C. Chaponnier, R.A. Brown, Nat. Rev. Mol. Cell Biol. 3 (2002) 349–363.
            [12] R. Agha, R. Ogawa, G. Pietramaggiori, D.P. Orgill, J. Surg. Res. 171 (2011) 700–708.
            [13] V.W. Wong, S. Akaishi, M.T. Longaker, G.C. Gurtner, J. Invest. Dermatol. 131 (2011) 2186–2196.
            [14] L.A. Barnes, C.D. Marshall, T. Leavitt, M.S. Hu, A.L. Moore, J.G. Gonzalez, M.T. Longaker, G.C. Gurtner, Adv. Wound Care (New Rochelle)
                7 (2018) 47–56.
            [15] W. Wang, L. Guo, Y. Yu, Z. Chen, R. Zhou, Z. Yuan, J. Biomed. Mater. Res. Part A 103 (2015) 1703–1712.
            [16] T. Cherbuin, M.M. Movahednia, W.S. Toh, T. Cao, Stem Cell Rev. Rep. 11 (2015) 460–473.
            [17] J.L. Balestrini, K.L. Billiar, J. Biomech. 39 (2006) 2983–2990.
            [18] E.A. Lee, D.Y. Kim, E. Chung, E.A. Lee, K.S. Park, Y. Son, Cell Transplant. 23 (2014) 285–301.
            [19] G. Rolin, D. Binda, M. Tissot, C. Viennet, P. Saas, P. Muret, P. Humbert, J. Biomech. 47 (2014) 3555–3561.
            [20] M. Jiang, J. Qiu, L. Zhang, D. L€ u, M. Long, L. Chen, X. Luo, Exp. Ther. Med. 12 (2016) 1542–1550.
            [21] J.B. Schmidt, K. Chen, R.T. Tranquillo, Cell. Mol. Bioeng. 9 (2016) 55–64.
            [22] Q. Shu, J. Tan, V.D. Ulrike, X. Zhang, J. Yang, S. Yang, X. Hu, W. He, G. Luo, J. Wu, Sci. Rep. 6 (2016) 1–12.
            [23] J.S. Suwandi, R.E.M. Toes, T. Nikolic, B.O. Roep, Clin. Exp. Rheumatol. 33 (2015) 97–103.
            [24] R. Kuang, Z. Wang, Q. Xu, S. Liu, W. Zhang, Int. J. Clin. Exp. Med. 8 (2015) 7641–7647.
            [25] M.S. Chin, L. Lancerotto, D.L. Helm, P. Dastouri, M.J. Prsa, M. Ottensmeyer, S. Akaishi, D.P. Orgill, R. Ogawa, Plast. Reconstr. Surg. 124 (2009)
                102–113.
            [26] S.B. Zhou, J. Wang, C.A. Chiang, L.L. Sheng, Q.F. Li, Stem Cells 31 (2013) 2703–2713.
            [27] S. Aarabi, K.A. Bhatt, Y. Shi, J. Paterno, E.I. Chang, S.A. Loh, J.W. Holmes, M.T. Longaker, H. Yee, G.C. Gurtner, FASEB J. 21 (2007) 3250–3261.
            [28] G.C. Gurtner, R.H. Dauskardt, V.W. Wong, K.A. Bhatt, K. Wu, I.N. Vial, K. Padois, J.M. Korman, M.T. Longaker, Ann. Surg. 254 (2011)
                217–225.
            [29] J.E. Sanders, B.S. Goldstein, D.F. Leotta, J. Rehabil. Res. Dev. 32 (1995) 214–226.
            [30] J.E. Bischoff, E.M. Arruda, K. Grosh, J. Biomech. 33 (2000) 645–652.
            [31] M.G. Dunn, F.H. Silver, D.A. Swann, J. Invest. Dermatol. 84 (1985) 9–13.



                                          II. MECHANOBIOLOGY AND TISSUE REGENERATION
   356   357   358   359   360   361   362   363   364   365   366