Page 109 - MarceAlgebra Demystified
P. 109

96                                  CHAPTER 5 Exponents and Roots



                                 p ffiffiffi       n
                        general,  n  a ¼ b if b ¼ a. There is no problem with odd roots being
                        negative numbers:
                             p ffiffiffiffiffiffiffiffiffi
                              3                       3
                                64 ¼ 4 because ð 4Þ ¼ð 4Þð 4Þð 4Þ¼ 64:
                        If n is even, b is assumed to be the nonnegative root. Also even roots of
                        negative numbers do not exist in the real number system. In this book, it is
                        assumed that even roots will be taken only of nonnegative numbers. For
                                   p ffiffiffi
                        instance in  x, it is assumed that x is not negative.
                           Root properties are similar to exponent properties.
                                     p ffiffiffiffiffi  p p
                                               n
                                             ffiffiffi ffiffiffi
                        Property 1   n  ab ¼  n  a b
                        We can take the product then the root or take the individual roots then the
                        product.


                             Examples

                             p ffiffiffiffiffi  p ffiffiffiffiffiffiffiffiffiffiffi  p ffiffiffi p ffiffiffiffiffi
                               64 ¼   4   16 ¼  4    16 ¼ 2   4 ¼ 8
                             p ffiffiffi ffiffiffiffiffiffip  p ffiffiffiffiffiffiffiffi  p ffiffiffiffiffiffi ffiffiffiffiffi  p ffiffiffiffiffiffiffiffiffiffi
                                                     p
                              5  5      5        4    4     4
                               3 4x ¼    12x       6x 4y ¼    24xy
                        Property 1 only applies to multiplication. There is no similar property for
                        addition (nor subtraction). A common mistake is to ‘‘simplify’’ the sum of
                                                    p ffiffiffiffiffiffiffiffiffiffiffiffiffi
                                                       2
                        two squares.   For example    x þ 9 ¼ x þ 3 is incorrect.  The following
                        example should give you an idea of why these two expressions are not
                                                         p ffiffiffiffiffiffiffiffiffiffiffi  p  p ffiffiffi
                        equal. If there were the property  n  a þ b ¼  n  ffiffiffi  n  b, then we would have
                                                                    a þ
                             p ffiffiffiffiffi  p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi  p ffiffiffiffiffi  p ffiffiffi
                               58 ¼   49 þ 9 ¼   49 þ  9 ¼ 7 þ 3 ¼ 10:
                                                    2
                        This could only be true if 10 = 58.
                                          p
                                     r ffiffiffi  ffiffiffi
                                      a    n  a
                                     n
                        Property 2      ¼ p ffiffiffi
                                      b    n  b
                        We can take the quotient then the root or the individual roots then the
                        quotient.
                                   p
                             r ffiffiffi   ffiffiffi
                               4     4   2
                                 ¼ p ¼
                               9     9   3
                                     ffiffiffi
                                     p       p
                                       ffiffiffi  m  n  ffiffiffiffiffiffi
                                                m
                        Property 3    n  a ¼   a   (Remember that if n is even, then a must not be
                        negative.)
                        We can take the root then the power or the power then take the root.
   104   105   106   107   108   109   110   111   112   113   114