Page 110 - MarceAlgebra Demystified
P. 110

CHAPTER 5 Exponents and Roots                                                 97



                         p      p
                            ffiffiffi  n  n  ffiffiffiffiffi n
            Property 4    n  a ¼  a ¼ a
            Property 4 can be thought of as a root-power cancellation law.


                 Example


                 p      p ffiffiffiffiffi      p            p ffiffiffiffiffiffiffi  q ffiffiffiffiffiffiffiffiffiffiffi
                  3  ffiffiffiffiffi  3  3       ffiffiffi  2      3  3   3    3
                   27 ¼   3 ¼ 3     ð 5Þ ¼ 5        8x ¼    ð2xÞ ¼ 2x


                 Practice

                    p ffiffiffiffiffiffiffiffiffiffi
                 1:   25x ¼
                          2
                    q ffiffiffiffiffiffiffi
                        3
                 2:  3  8y ¼
                    q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                             2
                 3:   ð4   xÞ ¼
                    q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                               3
                 4:  3  ½5ðx   1ފ ¼


                 Solutions

                             q ffiffiffiffiffiffiffiffiffiffiffi
                    p ffiffiffiffiffiffiffiffiffiffi
                                   2
                          2
                 1:   25x ¼    ð5xÞ ¼ 5x
                    q ffiffiffiffiffiffiffi  q ffiffiffiffiffiffiffiffiffiffi
                                  3
                        3
                 2:  3  8y ¼  3  ð2yÞ ¼ 2y
                    q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                             2
                 3:   ð4   xÞ ¼ 4   x
                    q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                               3
                 4:  3  ½5ðx   1ފ ¼ 5ðx   1Þ
            These properties can be used to simplify roots in the same way canceling
            is used to simplify fractions. For instance you normally would not leave
            p ffiffiffiffiffi
              25 without simplifying it as 5 any more than you would leave         12
                                           p ffiffiffiffiffiffi                                4
            without reducing it to 3.   In  n  a m  if m is at least as large as n, then
            p                                         p      p p
                                                       n
               m
                                                                 n
                                                        ffiffiffiffiffi
             n  ffiffiffiffiffiffi  can be simplified using Property 1 ( ab ¼  n  ffiffiffi ffiffiffi
                                                               a b) and Property 4
              a
             p ffiffiffiffiffi
              n
                n
            ( a ¼ a).
   105   106   107   108   109   110   111   112   113   114   115