Page 115 - MarceAlgebra Demystified
P. 115

102                                  CHAPTER 5 Exponents and Roots



                                      p ffiffiffi p   p      p
                                r ffiffiffi       ffiffiffi   ffiffiffiffiffi  ffiffiffiffiffi
                                  6     6   7     42     42
                             3:     ¼ p   p ¼ p   ffiffiffiffiffi ¼
                                  7     ffiffiffi  ffiffiffi  7 2    7
                                            7
                                        7
                                           p ffiffiffi   p ffiffiffi   p ffiffiffi
                                 8x    8x    3   8x 3    8x 3
                             4: p ¼ p   p ¼ p      ffiffiffiffiffi ¼
                                   ffiffiffi
                                             ffiffiffi
                                        ffiffiffi
                                   3    3    3     3 2     3
                                        p ffiffiffiffiffiffiffiffi p  p        p
                                r ffiffiffiffiffiffiffiffi       ffiffiffiffiffi  ffiffiffiffiffiffiffiffiffiffi  ffiffiffiffiffiffiffiffiffiffi
                                  7xy     7xy    11     77xy     77xy
                             5:       ¼ p  ffiffiffiffiffi   p ffiffiffiffiffi ¼ p ffiffiffiffiffiffiffi ¼
                                   11      11    11      11 2     11
                        In the case of a cube (or higher) root, multiplying the fraction by
                        the denominator over itself usually does not work. To eliminate the nth
                        root in the denominator, we need to write the denominator as the
                        nth root of some quantity to the nth power.     For example, to simplify
                         1              3
                        p ffiffiffi we need a 5 under the cube root sign. There is only one 5 under the
                         3
                          5
                        cube root. We need a total of three 5s, so we need two more 5s. Multiply
                               2
                                        3
                        5by5 to get 5 :
                                  p ffiffiffiffiffi  p ffiffiffiffiffi  p ffiffiffiffiffi
                              1   3  5 2  3  5 2  3  25
                             p ffiffiffi   p ffiffiffiffiffi ¼ p ffiffiffiffiffi ¼  :
                              3   3  2   3  3
                               5    5     5      5
                        When the denominator is written as a power (often the power is 1) sub-
                        tract this power from the root.   The factor will have this number as a
                        power.
                             Examples


                               8    The root minus the power 4   3 ¼ 1:
                             p
                                                      1
                              4  ffiffiffiffiffi  We need another x under the root.
                                3
                               x
                                   p ffiffiffiffiffi  p     p
                                            ffiffiffi
                               8   4  x 1  8 x   8 x
                                           4
                                                  4
                                                    ffiffiffi
                             p ffiffiffiffiffi   p ffiffiffiffiffi ¼ p ffiffiffiffiffi ¼
                              4  3  4  1  4  4    x
                               x     x     x
                              4x    The root minus the power is 5   2 ¼ 3:
                             p ffiffiffiffiffi
                                                      3
                              5  2  We need another x under the root.
                               x
                                   p ffiffiffiffiffi  p ffiffiffiffiffi  p ffiffiffiffiffi
                                            5
                                                      5
                              4x   5  x 3  4x x 3  4x x 3    p ffiffiffiffiffi
                                                             5
                             p ffiffiffiffiffi   p ffiffiffiffiffi ¼ p ffiffiffiffiffi ¼  ¼ 4 x 3
                              5  2  5  3   5  5      x
                               x     x       x
                                    p ffiffiffi p     p       p
                             r ffiffiffiffiffi  7   7  ffiffiffiffiffi 4  7  ffiffiffiffiffiffiffi 4  7  ffiffiffiffiffiffiffi 4
                               2      2    x      2x      2x
                              7
                                  ¼ p ffiffiffiffiffi   p ffiffiffiffiffi ¼ p ffiffiffiffiffi ¼
                               x 3   7  x 3  4  x 4  7  x 7  x
   110   111   112   113   114   115   116   117   118   119   120