Page 118 - MarceAlgebra Demystified
P. 118

CHAPTER 5 Exponents and Roots                                                105




                                          Roots Expressed as Exponents


            Roots can be written as exponents by using the following two properties.
            This ability is useful in algebra and calculus.
                         p ffiffiffi  1=n
            Property 1   n  a ¼ a
            The exponent is a fraction whose numerator is 1 and whose denominator is
            the root.



                 Examples

                 p ffiffiffi  1=2    p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi  1=3      1     1      1=2
                   x ¼ x        3  2x þ 1 ¼ð2x þ 1Þ      p ffiffiffi ¼   ¼ x
                                                          x    x 1=2
                         p ffiffiffi  m  p ffiffiffiffiffiffi  m=n
                                    m
                          n
            Property 2   ð aÞ ¼   n  a ¼ a    (If n is even, a must be nonnegative.)
            The exponent is a fraction whose numerator is the power and whose denomi-
            nator is the root.



                 Examples

                                               q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                 p ffiffiffiffiffi        p ffiffiffiffiffi
                  5  3   3=5     5  6   6=5         2    7      2    7=2
                   x ¼ x          x ¼ x         ð2x   1Þ ¼ð2x   1Þ
                 q ffiffiffiffiffiffiffiffiffiffiffiffiffi        15     15
                  3     2        2=3                     3=2
                   ð12xÞ ¼ð12xÞ         p ffiffiffiffiffi ¼  3=2  ¼ 15x
                                         x 3  x


                 Practice

                      p ffiffiffiffiffiffiffiffi
                  1:   14x ¼
                       3
                  2: p  ffiffiffiffiffiffi ¼
                        2x
                      q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
                              5
                  3:  6  ðx þ 4Þ ¼
                      3x   5
                  4: p  ffiffiffiffiffiffiffiffiffiffiffi ¼
                        x   5
   113   114   115   116   117   118   119   120   121   122   123