Page 114 - MarceAlgebra Demystified
P. 114

CHAPTER 5 Exponents and Roots                                                101



            Roots of fractions or fractions with a root in the denominator are not
                                                                            p ffiffiffiffiffi
                                                                               n
            simplified. To eliminate roots in denominators, use the fact that  n  a ¼ a
            and that any nonzero number over itself is one. We will begin with square
            roots. If the denominator is a square root, multiply the fraction by the denomi-
            nator over itself. This will force the new denominator to be a perfect square.


                 Examples

                            p ffiffiffi  p ffiffiffi  p ffiffiffi           p      p       p
                                                                          ffiffiffi
                                                                   ffiffiffi
                                                            ffiffiffi
                  1     1    2      2     2      4     4    x   4 x    4 x
                 p ffiffiffi ¼ p   p ¼ p ffiffiffiffiffi ¼      p ffiffiffi ¼ p   p ¼ p ffiffiffiffiffi ¼
                         ffiffiffi
                             ffiffiffi
                                                        ffiffiffi
                                                            ffiffiffi
                   2     2   2     2 2   2        x     x   x     x 2    x
                       p ffiffiffi p    p     p
                 r ffiffiffi       ffiffiffi    ffiffiffi   ffiffiffi
                   2     2   3      6     6
                     ¼ p   p ¼ p   ffiffiffiffiffi ¼
                             ffiffiffi
                         ffiffiffi
                   3     3   3     3 2   3
                 Practice
                      3
                 1: p ¼
                       ffiffiffi
                       5
                      7
                 2: p ¼
                       y
                       ffiffiffi
                    r ffiffiffi
                      6
                 3:     ¼
                      7
                     8x
                 4: p ¼
                       ffiffiffi
                       3
                    r ffiffiffiffiffiffiffiffi
                      7xy
                 5:       ¼
                       11


                 Solutions
                               p ffiffiffi  p ffiffiffi  p ffiffiffi
                      3     3    5   3 5    3 5
                 1: p ¼ p   p ¼ p      ffiffiffiffiffi ¼
                                 ffiffiffi
                       ffiffiffi
                            ffiffiffi
                       5    5    5     5 2   5
                               p      p      p
                      7     7    y   7 y    7 y
                                               ffiffiffi
                                 ffiffiffi
                                        ffiffiffi
                                       ffiffiffiffiffi ¼
                       y    y    y     y 2   y
                 2: p ¼ p   p ¼ p
                            ffiffiffi
                                 ffiffiffi
                       ffiffiffi
   109   110   111   112   113   114   115   116   117   118   119