Page 136 - MarceAlgebra Demystified
P. 136

CHAPTER 6 Factoring                                                          123



                       2
                 4: 4x þ 4x ¼
                       3     2
                 5: 4x   6x þ 12x ¼
                            2    2
                 6:   24xy þ 6x þ 18x ¼
                        4     2
                 7: 30x   6x ¼
                        3 2 7       2 4    4 2 6
                 8: 15x y z   30xy z þ 6x y z ¼



                 Solutions


                 1: 4x   10y ¼ 2   2x   2   5y ¼ 2ð2x   5yÞ

                 2: 3x þ 6y   12 ¼ 3   x þ 3   2y   3   4 ¼ 3ðx þ 2y   4Þ
                       2           2            2
                 3: 5x þ 15 ¼ 5   x þ 5   3 ¼ 5ðx þ 3Þ
                       2
                 4: 4x þ 4x ¼ 4x   x þ 4x   1 ¼ 4xðx þ 1Þ

                       3     2               2                        2
                 5: 4x   6x þ 12x ¼ 2x   2x   2x   3x þ 2x   6 ¼ 2xð2x   3x þ 6Þ
                            2
                                                    2
                                  2
                  6:   24xy þ 6x þ 18x ¼ 6x  ð 4y Þþ 6x   x þ 6x   3
                                                  2
                                         ¼ 6xð 4y þ x þ 3Þ
                        4     2     2   2     2        2   2
                 7: 30x   6x ¼ 6x   5x   6x   1 ¼ 6x ð5x   1Þ
                                    2 4
                                            4 2 6
                                                                      2 4
                        3 2 7
                                                       2 4
                                                             2 3
                  8: 15x y z   30xy z þ 6x y z ¼ 3xy z   5x z   3xy z   10
                                                               3 2
                                                        2 4
                                                  þ 3xy z   2x z
                                                       2 4  2 3          3 2
                                                 ¼ 3xy z ð5x z   10 þ 2x z Þ
            Factoring a negative quantity has the same effect on signs within parentheses
            as distributing a negative quantity does—every sign changes. Negative quan-
            tities are factored in the next examples and practice problems.
                 Examples


                 x þ y ¼  ð x   yÞ                    4 þ x ¼ ð4   xÞ
   131   132   133   134   135   136   137   138   139   140   141