Page 138 - MarceAlgebra Demystified
P. 138

CHAPTER 6 Factoring                                                          125



            The associative and distributive properties can be confusing. The associative
            property states ðabÞc ¼ aðbcÞ. This property says that when multiplying three
            (or more) quantities you can multiply the first two then the third or multiply
            the second two then the first. For example, it might be tempting to write
            5ðx þ 1Þðy   3Þ¼ð5x þ 5Þð5y   15Þ.   But     ð5x þ 5Þð5y   15Þ¼½5ðx þ 1ފ
            ½5ðy   3ފ ¼ 25ðx þ 1Þðy   3Þ. The ‘‘5’’ can be grouped either with ‘‘x þ 1’’
            or with ‘‘y   3’’ but not both: ½5ðx þ 1ފðy   3Þ¼ð5x þ 5Þðy   3Þ or
            ðx þ 1Þ½5ðy   3ފ ¼ ðx þ 1Þð5y   15Þ.
               Factors themselves can have more than one term. For instance 3ðx þ 4Þ
            xðx þ 4Þ has x þ 4 as a factor in each term, so x þ 4 can be factored from
            3ðx þ 4Þ and xðx þ 4Þ:

                 3ðx þ 4Þ  xðx þ 4Þ¼ð3   xÞðx þ 4Þ:



                 Examples


                 2xð3x þ yÞþ 5yð3x þ yÞ¼ð2x þ 5yÞð3x þ yÞ

                 10yðx   yÞþ x   y ¼ 10yðx   yÞþ 1ðx   yÞ¼ð10y þ 1Þðx   yÞ

                 8ð2x   1Þþ 2xð2x   1Þ  3yð2x   1Þ¼ð8 þ 2x   3yÞð2x   1Þ



                 Practice

                 1: 2ðx   yÞþ 3yðx   yÞ¼


                 2: 4ð2 þ 7xÞ  xð2 þ 7xÞ¼

                 3: 3ð3 þ xÞþ xð3 þ xÞ¼

                 4: 6xð4   3xÞ  2yð4   3xÞ  5ð4   3xÞ¼

                 5: 2x þ 1 þ 9xð2x þ 1Þ¼
                             4            4
                 6: 3ðx   2yÞ þ 2xðx   2yÞ ¼



                 Solutions

                 1: 2ðx   yÞþ 3yðx   yÞ¼ð2 þ 3yÞðx   yÞ
   133   134   135   136   137   138   139   140   141   142   143