Page 124 - Applied Statistics Using SPSS, STATISTICA, MATLAB and R
P. 124

3.6 Bootstrap Estimation   103


              The bias w boot − w = 0.2764 – 0.2755 = 0.0009 is quite small (less than 10% of
           the standard deviation). We therefore compute the bootstrap confidence interval of
           the trimmed mean as:

              w  t ±  93  . 0 ,  975 SE boot  = 0.2755 ± 1.9858×0.0093 = 0.276 ± 0.018


           Example 3.10
           Q: Compute the confidence interval at 95% level of the standard deviation for the
           data of the previous example.
           A: The standard deviation of the original sample is s ≡ w = 0.086. The histogram of
           the bootstrap distribution  of the standard deviation with  m = 1000 resamples is
           shown in Figure 3.10. This empirical distribution is well approximated by the
           normal distribution. We compute:

              w boot = 0.0854
              SE boot = 0.0070

              The bias w boot   − w = 0.0854 – 0.086 = −0.0006 is quite small (less than 10% of
           the standard deviation). We therefore compute the bootstrap confidence interval of
           the standard deviation as:

              w  t ±  93  . 0 ,  975 SE boot  = 0.086 ± 1.9858×0.007 = 0.086 ± 0.014


                             300
                               n
                             250
                             200
                             150

                             100
                              50
                                                           w*
                              0
                              0.05  0.06  0.07  0.08  0.09  0.1  0.11
           Figure 3.10. Histogram of the bootstrap distribution of the standard deviation of
           the CaO data (1000 resamples).


           Example 3.11
           Q: Consider the variable ART (total area of defects) of the cork stoppers’
           dataset. Using the bootstrap method compute the confidence interval at 95% level
           of its median.
   119   120   121   122   123   124   125   126   127   128   129