Page 181 - Applied Statistics Using SPSS, STATISTICA, MATLAB and R
P. 181

4.5 Inference on More than Two Populations   161


              Notice that in Table 4.21 the total sum of squares and the model sum of squares
           are computed using formulas 4.43a and 4.43b, respectively, without the last term of
           these formulas. Therefore, the degrees of freedom are crn and cr, respectively.


           Table 4.21. Two-way ANOVA test results, obtained with SPSS, for Example 4.19.
                        Type III Sum of
           Source                         df    Mean Square       F       Sig.
                           Squares
           Model          46981.250       6       7830.208     220.311   0.000
           F1              108.083        2        54.042       1.521    0.245
           F2              630.375        1       630.375      17.736    0.001
           F1 * F2  a      217.750        2       108.875       3.063    0.072
           Error           639.750        18       35.542
           Total          47621.000       24
           a Interaction term.


                             60




                             50


                           Estimated Marginal Means  40     F2         1






                             30
                              1             F1 2            3         2

           Figure 4.19. Plot of estimated marginal means for Example 4.19. Factor 2 (F2)
           interacts with Factor 1 (F1).


           Example 4.20

           Q: Consider the  FHR-Apg ar   dataset, relating variability indices of foetal heart
           rate (FHR, given in percentage) with the responsiveness of the new-born (Apgar)
           measured on  a 0-10 scale (see Appendix  E). The  dataset includes observations
           collected in three hospitals. Perform a factorial model analysis on this dataset, for
           the variable ASTV (FHR variability index), using  two factors:  Hospital (3
           categories, HUC ≡ 1, HGSA ≡ 2 and HSJ ≡ 3); Apgar 1 class (2 categories: 0 ≡ [0, 8],
           1 ≡ [9,10]). In order to use an orthogonal model, select a random sample of n = 6
           cases for each combination of the categories.
   176   177   178   179   180   181   182   183   184   185   186