Page 287 - Classification Parameter Estimation & State Estimation An Engg Approach Using MATLAB
P. 287

276                               STATE ESTIMATION IN PRACTICE

            disp(‘Kalman gain matrix’);                     disp(M);
            disp(‘Eigenval. of Kalman filter’);             disp(E);
            disp(‘Error covariance’);                       disp(Z);
            disp(‘Prediction covariance’);                  disp(P);
            disp(‘Eigenval. of prediction covariance’);     disp(eig(P));
            disp(‘Solution of discrete Lyapunov equation’);  disp(Cx_inf);
            disp(‘Eigenval. of sol.
             of discrete Lyapunov eq.’);                    disp(eig
                                                             (Cx_inf));




            8.3   COMPUTATIONAL ISSUES

            A straightforward implementation of the time-variant Kalman filter may
            result in too large estimation errors. The magnitudes of these errors are
            not compatible with the error covariance matrices. The filter may even
            completely diverge even though theoretically the filter should be stable.
            This anomalous behaviour is due to a number representation with
            limited precisions. In order to find where round-off errors have the
            largest impact it is instructive to rephrase the Kalman equations in
            (8.2) as follows:

              Ricatti loop:


                                            T             T      1
                CðijiÞ¼ Cðiji   1Þ  Cðiji   1ÞH ðHCðiji   1ÞH þC v Þ  HCðiji   1Þ
                              T
            Cði þ 1jiÞ¼ FCðijiÞF þ C w


                                    #
                                                 T  1
                                KðiÞ¼ Cðiji   1ÞH S ðiÞ                ð8:27Þ
                                                  T
                                SðiÞ¼ HCðiji   1ÞH þ C v
                                    #
            estimation loop:



                          xðijiÞ¼ xðiji   1Þþ KðiÞðzðiÞ  Hxðiji   1ÞÞ
                       xði þ 1jiÞ¼ F xðijiÞþ LuðiÞ

            For simplicity, the system (F, L, H) is written without the time index.
   282   283   284   285   286   287   288   289   290   291   292