Page 287 - Computational Statistics Handbook with MATLAB
P. 287

276                        Computational Statistics Handbook with MATLAB




                                            Histogram Density           ASH − m=5
                                      0.5                       0.5

                                     0.45                      0.45
                                      0.4                       0.4
                                     0.35                      0.35
                                      0.3                       0.3
                                     0.25                      0.25

                                      0.2                       0.2
                                     0.15                      0.15
                                      0.1                       0.1
                                     0.05                      0.05
                                        0                        0
                                        −4  −2    0    2   4      −4  −2    0    2   4

                              F FI  U URE G 8.6  RE 8.6
                               IG
                              F F II  GU  RE RE 8.6
                               GU
                                  8.6
                              On the left is a histogram density based on 100 standard normal random variables, where
                              we used the MATLAB default of 10 bins. On the right is an ASH estimate for the same data
                              set, with m = 5.
                                                       m – 1
                                           ˆ         1         i 
                                           f ASH x() =  ------  ∑   1 –  ---- ν k + ;  x in B′ k  .  (8.22)
                                                                 
                                                                     i
                                                    nh         m
                                                      i =  1 – m
                             To make this a little clearer, let’s look at a simple example of the naive ASH,
                             with m =  3  . In this case, our estimate at a point x is


                                     ˆ         1     2         1        0
                                                      -
                                                                  -
                                     f ASH x() =  ------ 1 –  -- ν k – +  1 –  -- ν k – +  1 –  -- ν k – +
                                                                              -
                                               nh    3   2     3   1    3   0
                                                     1         2
                                                                  -
                                                      -
                                                                   
                                                       
                                                   1 –  -- ν k + +   1 –  -- ν k +  2 ;  x in B′ k .
                                                           1
                                                      3
                                                                  3
                                                           ⁄
                              We can think of the factor  1 –(  im)   in Equation 8.22 as weights on the bin
                             counts. We can use arbitrary weights instead, to obtain the general ASH.
                             GENERAL AVERAGED SHIFTED HISTOGRAM
                                             ˆ      1
                                             f ASH =  ------  ∑  w m i()ν k + ;  x in B′ k   .  (8.23)
                                                                  i
                                                    nh
                                                      i <  m
                            © 2002 by Chapman & Hall/CRC
   282   283   284   285   286   287   288   289   290   291   292