Page 631 - Design for Six Sigma a Roadmap for Product Development
P. 631

584   Chapter Sixteen


                              C

                                            y = C – A – B
                                    B
                          A














           Figure 16.6 Assembly clearance.


             C, that is, T C ,  ′ C and   C , such that the clearance requirement is satisfied
             with C p   2.00.
               The centerpoint of clearance E(y) is (0.001   0.005)/2   0.003. Because
             E(y)   E(C)   E(A)   E(B), it follows that 0.0025   T c   2.0   1.0, T c
             3.003. Then
                                     A     0.001
                                A                  0.00025
                                   3C p  3 
 1.33
                                                                         2
                                                         2
                                                                    2
             Similarly,    B   0.00025. The variance of  y is       2 A
                                                                         C
                                                                    B
                             2
                        2
             2 
 0.00025    . For y, if C p   2, the required standard deviation for
                             C
             clearance is
                                     0   0.002
                                                0.00033333
                                  3C p   3 
 2
                                                         2
                                  2
                                                                           2
                      2
                                                             2
             Because     0.0003333 is less than the current        2 
 0.00025 ,
                                                         A
                                                             B
             there will be no feasible   C and   C , unless the tolerances for A and B are
             changed. If we can change these tolerances, we can find feasible tolerance
             for C. If we assume   A    B    C , then
                                               2
                                2
                                     2
                                         2
                           2
                                       3    0.000333333      2
                                    B
                                A
                                         C
                                               A

                                              2
                                     0.00033333
                                A                0.0001924
                                         3
             If C p is still 1.333 for A, B, and C, then
                     A    B    C   3C p   A   3 
 1.333 
 0.0001924   0.00077
   626   627   628   629   630   631   632   633   634   635   636