Page 339 - Fundamentals of Probability and Statistics for Engineers
P. 339

322                    Fundamentals of Probability and Statistics for Engineers

                          Table 10.3  Table for   2  test for Example 10.2
                                                           2
                         Interval, A i  n i  p i    np i  n /np i
                                                           i
                         x    0      5147   0.6188  4853  5459
                         0 <  x    1  1859  0.2970  2329  1484
                         1 <  x    2  595   0.0713   559   633
                         2 <  x    3  167   0.0114    89   313
                         3 <  x    4   54   0.0013    10   292
                         4 <  x    5   14   0.0001    1    196
                         5 <  x         6   0.0001    1     36
                                     7842   1.0     7842  8413
                         Note:  n i ,  observed  number  of  occurrences;  p i ,
                         theoretical P(A i ).

           We thus have


                                    …0:48† i 1  0:48
                                            e
                         P…A i †ˆ p i ˆ          ;  i ˆ 1; 2; ... ; 6;
                                       …i   1†!
                                         6
                                        X
                        P…A 7 †ˆ p 7 ˆ 1    p i ;
                                        iˆ1
           These values are indicated in the third column of Table 10.3.
             Column 5 of Table 10.3 gives

                                 k  2
                                X  n
                            d ˆ     i    n ˆ 8413   7842 ˆ 571:
                                   np i
                                iˆ1
           With k ˆ  7, the value of   2  ˆ   2  is found from Table A.5 to be
                                           :
                                 k 1,    6, 0 01

                                               :
                                       2   ˆ 16 812:
                                        :
                                       ;
                                      6 0 01
           Since d >  2  , the hypothesis is rejected at the 1% significance level.
                     6, 0: 01
           10.2.2  THE  CASE  OF  ESTIMATED  PARAMETERS

           Let us now consider a more common situation in which parameters in the
           hypothesized distribution also need to be estimated from the data.
             A natural procedure for a goodness-of-fit test in this case is first to estimate
           the parameters by using one of the methods developed in Chapter 9 and then to
           follow the   2  test for known parameters, already discussed in Section 7.2.1. In








                                                                            TLFeBOOK
   334   335   336   337   338   339   340   341   342   343   344