Page 341 - Fundamentals of Probability and Statistics for Engineers
P. 341

324                    Fundamentals of Probability and Statistics for Engineers

                        Table 10.4  One-minute arrivals, for Example 10.3
                        Vehicles per minute (No.)  Number of occurrences
                         0                         0
                         1                         0
                         2                         1
                         3                         3
                         4                         5
                         5                         7
                         6                        13
                         7                        12
                         8                         8
                         9                         9
                        10                        13
                        11                        10
                        12                         5
                        13                         6
                        14                         4
                        15                         5
                        16                         4
                        17                         0
                        18                         1
                                              nˆ 106



             Answer: the hypothesized distribution is

                                      x
                                       e
                              p …x†ˆ       ;  x ˆ 0; 1; 2; ... ;       …10:11†
                               X
                                       x!
           where parameter    needs to be estimated from the data. Thus, r ˆ  1.
             To proceed, we first determine appropriate intervals A i  such that n i    5 for
           all i; these are shown in the first column of Table 10.5. Hence,  kˆ  11.
             The maximum likelihood estimate for    is given by

                                            n
                                         1  X
                                  ^
                                    ˆ x ˆ     x j ˆ 9:09:
                                         n
                                           jˆ1
           The substitution of this value for parameter    in Equation (10.11) permits us to
           calculate probabilities P(A i ) ˆ  p i . For example,
                                       4
                                      X
                                  p 1 ˆ   p …j†ˆ 0:052;
                                           X
                                       jˆ0
                                  p 2 ˆ p …5†ˆ 0:058:
                                       X







                                                                            TLFeBOOK
   336   337   338   339   340   341   342   343   344   345   346