Page 261 - Handbook of Civil Engineering Calculations, Second Edition
P. 261

2.46    REINFORCED AND PRESTRESSED CONCRETE ENGINEERING AND DESIGN

                            4. Compute the vertical shear at distance d from the column face
                            Establish the width of the footing. Thus V   229.2   2.63(30.1)   150.0 kips (667.2
                            kN);v   V/(Wd), or  W   V/(vd)    150/[8.64(2.63)]    6.60 ft (2.012 m). Set  W
                            6 ft 8 in.(2.032 m).
                            5. Check the soil pressure
                            The footing weight   20.67(6.67)(2.92)(0.150)   60.4 kips (268.66 kN); p
  (620
                            60.4)/[(20.67)(6.67)]   4.94 kips/sq.ft. (0.236 MPa) < 5 kips/sq.ft. (0.239 MPa). This is
                            acceptable.
                            6. Check the punching shear
                            Thus, p   4.94   2.92(0.150)   4.50 kips/sq.ft. (0.215 MPa). At C1: b o   18   31.5
                            2 (18   15.8)   117 in. (2971.8 mm); V   250   4.50(49.5)(33.8)/144   198 kips
                            (880.7 kN); v 1   198,000/[117(31.5)]   54 lb/sq.in. (372.3 kPa) < 110 lb/sq.in. (758.5
                            kPa); this is acceptable.
                                                                                   2
                              At C2: b o   4(20   31.5)   206 in. (5232.4 mm); V   370   4.50(51.5) /144   287
                            kips (1276.6 kN); v 1   287,000/[206(31.5)]   44 lb/sq.in. (303.4 kPa). This is acceptable.
                            7. Design the longitudinal reinforcement for negative moment
                                                                                         2
                            Thus, M   851,400 ft·lb   10,217,000 in.·lb (1,154,316.6 N·m); M b   223(80)(31.5)
                            17,700,000 in.·lb (1,999,746.0 N·m). Therefore, the steel is stressed to capacity, and A s
                                                                     2
                            10,217,000/[20,000(0.874)(31.5)]   18.6 sq.in. (120.01 cm ). Try 15 no. 10 bars with A s
                                           2
                            19.1 sq.in. (123.2 cm );  o   59.9 in. (1521.46 mm).
                              The bond stress is maximum at the point of contraflexure, where V   15.81(30.1)
                            250   225.9 kips (1004.80 kN); u   225,900/[59.9(0.874)(31.5)]   137 lb/sq.in. (944.6
                                             0.5
                            kPa); u allow   3.4(3000) /1.25   149 lb/sq.in. (1027.4 kPa). This is acceptable.
                            8. Design the longitudinal reinforcement for positive moment
                            For simplicity, design for the maximum moment rather than the moment at the face of the
                                                                                       2
                            column. Then A s   158,400(12)/[20,000(0.874)(31.5)]   3.45 sq.in. (22.259 cm ). Try
                                                             2
                            six no. 7 bars with A s   3.60 sq.in. (23.227 cm );  o   16.5 in. (419.10 mm). Take LM as
                            the critical section for bond, and u   90,800/[16.5(0.874)(31.5)]   200 lb/sq.in. (1379.0
                                             0.5
                            kPa); u allow   4.8(3000) /0.875   302 lb/sq.in. (2082.3 kPa). This is acceptable.
                            9. Design the transverse reinforcement under the interior column
                            For this purpose, consider member GNPH as an independent isolated footing. Then V ST
                                                                 1
                            370(2.50/6.67)   138.8 kips (617.38 kN); M ST   /2(138.8)(2.50)(12)   2082 in.·kips
                            (235.22 kN·m). Assume  d   35    4.5    30.5 in. (774.7 mm);  A s   2,082,000/
                                                              2
                            [20,000(0.874)(30.5)]   3.91 sq.in. (25.227 cm ). Try seven no. 7 bars; A s   4.20 sq.in.
                                     2
                            (270.098 cm );   o   19.2 in. (487.68 mm);  u   138,800/[19.2(0.874)(30.5)]    271
                            lb/sq.in. (1868.5 kPa); u allow   302 lb/sq.in. (2082.3 kPa). This is acceptable.
                              Since the critical section for shear falls outside the footing, shearing stress is not a cri-
                            terion in this design.
                            10. Design the transverse reinforcement under the exterior
                            column; disregard eccentricity
                            Thus, V UV   250(2.58/6.67)   96.8 kips (430.57 kN); M UV   /2(96.8)(2.58)(12)   1498
                                                                         1
                                                                2
                            in.·kips (169.3 kN·m); A s   2.72 sq.in. (17.549 cm ). Try five no. 7 bars; A s   3.00 sq.in.
                                    2
                            (19.356 cm );   o    13.7 in. (347.98 mm); u   96,800/[13.7(0.874)(31.5)]    257
                            lb/sq.in. (1772.0 kPa). This is acceptable.
                                             Cantilever Retaining Walls
                            Retaining walls having a height ranging from 10 to 20 ft (3.0 to 6.1 m) are generally built
                            as reinforced-concrete cantilever members. As shown in Fig. 28, a cantilever wall
   256   257   258   259   260   261   262   263   264   265   266