Page 127 - MATLAB an introduction with applications
P. 127

112 ———  MATLAB: An Introduction with Applications

                   Solution:
                   When a capacitor discharges through a resistor, the voltage of the capacitor as a function of time is given
                   by:  V = V 0  exp(–t/RC), where V 0  is the initial voltage, R is the resistance of the resistor and C is the
                   capacitance of the capacitor.
                   By taking logarithms on both sides
                                         1
                                ln(V) = −  t + ln(V 0 )
                                        RC
                   This equation which has the form y = mx + c can be fitted to the data points by using the MATLAB function
                   polyfit (x, y, 1) with t as the independent variable x and ln(V) as the dependent variable y. The coefficients
                   m and c are determined by the polyfit function then used to determine C and V 0 .

                   MATLAB Program:
                   r=2000;                      % RESISTANCE VALUE
                   t=1:10;                      % time in seconds
                   v=[9.5 7.35 5.25 3.65 2.85 2.05 1.25 0.95 0.75 0.61]; % OBSERVED VALUES of voltage
                   p=polyfit(t,log(v),1);       % one dimensional polynomial fit
                   c=–1/(r*p(1));               % finding C
                   v0=exp(p(2));                % finding V 0
                   tplot=0:0.1:10;              % choosing plotting coordinates
                   vplot=v0*exp(–tplot./(r*c));
                   disp(‘Capacitance’);c
                   plot(t,v, ‘o’,tplot,vplot)
                   xlabel(‘t(s)’)
                   ylabel(‘voltage’);
                   MATLAB Output:
                   Capacitance
                   c =
                       0.0016
                                        14

                                        12

                                        10

                                        Voltage  8 6




                                         4
                                         2

                                         0
                                          0   1   2    3   4   5   6   7    8   9   10
                                                              t(s)
                                                  Fig. E2.5(a) MATLAB output





                   F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09
   122   123   124   125   126   127   128   129   130   131   132