Page 102 - MATLAB Recipes for Earth Sciences
P. 102

5.3 Autospectral Analysis                                        95

             plot(f,magnitude),grid
             xlabel('Frequency')
             ylabel('Power')
             title('Power Spectral Density Estimate')

           Let us increase the noise level. The gaussian noise has now a standard devia-
           tion of five and zero mean.

             randn('seed',0);
             n = 5*randn(size(y));
             yn = y + n;
             [Pxx,f] = periodogram(yn,[],1024,1);
             magnitude = abs(Pxx);
             plot(f,magnitude), grid
             xlabel('Frequency')
             ylabel('Power')
             title('Power Spectral Density Estimate')
           This spectrum resembles a real data spectrum in the earth sciences. The
           spectral peaks now sit on a signifi cant noise floor. The peak of the high-

           est frequency even disappears in the noise. It cannot be distinguished from
           maxima which are attributed to noise. Both spectra can be compared on the
           same plot (Fig. 5.6):
             [Pxx,f] = periodogram(y,[],1024,1);
             magnitude = abs(Pxx);

                        Power Spectral                 Power Spectral
                       Density Estimate               Density Estimate
              1000                            1000

               800    f 1 =0.02                800    f 1 =0.02

              Power  600  f 2 =0.07           Power  600  f 2 =0.07

               400                             400           f 3 =0.2 ?  Noise
                                                                     floor
                              f 3 =0.2
               200                             200

                 0                               0
                  0   0.1  0.2  0.3  0.4  0.5     0   0.1  0.2  0.3  0.4  0.5
                          Frequency                       Frequency
               a                              b
           Fig. 5.6 Comparison of the Welch power spectra of the a noise-free and b noisy synthetic
           signal with the periods τ =50 (f =0.02), τ =15 (f §0.07) and τ =5 (f =0.2). In particular, the
                             1    1      2    2         3   3

           peak with the highest frequency disappears in the noise floor and cannot be distinguished
           from peaks attributed to the gaussian noise.
   97   98   99   100   101   102   103   104   105   106   107