Page 199 - Marks Calculation for Machine Design
P. 199

P1: Shibu
                                      14:25
                          January 4, 2005
        Brown.cls
                 Brown˙C04
                              U.S. Customary  COMBINED LOADINGS   SI/Metric       181
                    solution                           solution
                    Step 1. Calculate the maximum shear stress  Step 1. Calculate the maximum shear stress
                    using Eq. (4.22).                  using Eq. (4.22).
                                2Tr o                            2Tr o
                        τ max =                          τ max =
                                                                  4
                                4
                             π r − R  4                        π r − R 4
                                o
                                                                  o
                             2 (72,000 lb · in)(4.0in)         2 (9,000 N · m)(0.1m)
                           =                                 =
                                                                              4
                                                                      4
                                            4
                                   4
                              π((4in) − (0.75 in) )            π((0.1m) − (0.02 m) )
                             576,000 lb · in 2                 1,800 N · m 2
                           =        4                        =         4
                                803 in                         0.000314 m
                                                                         2
                                   2
                           = 717 lb/in = 0.72 kpsi           = 5,740,000 N/m = 5.74 MPa
                    Step 2.  Calculate the minimum tangential  Step 2.  Calculate the minimum tangential
                    stress using Eq. (4.28).           stress using Eq. (4.28).
                              2pR 2                            2pR 2
                        σ  min  =                        σ  min  =
                         t
                                                               2
                              2
                             r − R 2                     t    r − R 2
                              o                                o
                                                                          2
                                      2
                             2 (9,650 lb/in )(0.75 in) 2      2 (48,680,000 N/m )(0.02 m) 2
                           =       2       2                =         2       2
                               (4in) − (0.75 in)                 (0.1m) − (0.02 m)
                              10,856 lb                        38,944 N
                           =        2                       =       2
                             15.4375 in                       0.0096 m
                                                                        2
                                   2
                           = 703 lb/in = 0.7 kpsi           = 4,057,000 N/m = 4.06 MPa
                    Step 3. From Eq. (4.29), the minimum radial  Step 3. From Eq. (4.29), the minimum radial
                    stress is zero.                    stress is zero.
                              σ r min  = 0 kpsi                  σ r min  = 0MPa
                    Step 4. Display the stresses found in steps 1,  Step 4. Display the stresses found in steps 1,
                    2, and 3, in kpsi, on the edge view of the stress  2, and 3, in MPa, on the edge view of the stress
                    element shown in Fig. 4.26.        element shown in Fig. 4.26.
                                    0.70                              4.06
                            0           0                      0           0
                                    0.72                              5.74
                                    0.70                              4.06
                               Edge view                          Edge view
   194   195   196   197   198   199   200   201   202   203   204